(26) * << * >> * Russian * English * Content * All Issues

Diffraction interferometers based on zone plates. Part II. Visualization and measurement of thermal inhomogeneities in the optical thickness of a laser active element

S.L. Mikerin1,I.G. Palchikova1,V.D. Ugozhaev1
1Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk)

 PDF, 123 kB

Pages: 37-47.

Abstract:
The paper reports on the use of a diffraction interferometer based on a zone plate for the investigation of thermal inhomogeneities of optical thickness of a tubular laser active element. The results of recording the temporal variation of transverse distribution of the inhomogeneity of optical thickness of a potassium gadolinium tungstate (PGT) crystal, appearing after a pump lamp flash, are presented. It is detected that the photoelastic part of phase perturbations arising near the pump lamp is opposite in sign to the thermal change in the refractive index and the linear dimensions of the sample and exceeds them in magnitude, which indirectly indicates the dominant influence of photoelastic effects on the formation of lasing in PGT lasers.

Keywords:
diffraction interferometer, potassium gadolinium tungstate, PGT, lamp flash, photoelastic effect, laser.

Citation:
Mikerin SL, Palchikova IG, Ugozhaev VD. Diffraction interferometers based on zone plates. Part II. Computer Optics 2004; 26: 37-47.

References:

  1. Gulev VS, Mikerin SL, Klyuchnikov AA, Ugozhaev VD, Nesterenko VF, Yurkin AM. Generation in a laser with a tubular active element made of a neodymium-doped potassium-gadolinium tungstate crystal. Quantum Electronics 2001; 31(10): 867. 
  2. Mezenov AV, Soms LN, Stepanov AI. Thermooptics of solid-state lasers [In Russian]. Leningrad: "Mashinostroenie" Publisher; 1989. 
  3. Kostyukevich EA, Min'ko LY. Two-mirror autocollimation interferometer with the field visualization. J Appl Spectrosc 1981; 34(3): 551-555. 
  4. Gromov AK, Izyneev AA, Kopylov YL, Kravchenko VB. Temperature dependence of the thermooptical constant W of phosphate glasses [In Russian]. Physics and Chemistry of Glasses 1976; 2(5): 444-448. 
  5. Buzhnitskiĭ IM, Dianov EM, Mamonov SK, Mikhailova LM, Prokhorov AM. Thermooptical characteristics of neodymium-activated glasses [In Russian]. Doklady Akademii Nauk SSSR 1970; 190(3): 558-561. 
  6. Zuikov IE, Oksenchuk ID. Intracavity method of recording changes in refractive index [In Russian]. Avtometriya 2002; 2: 92-96. 
  7. Koronkevitch VP, Palchikova IG. Interference properties of zone plates. Optoelectronics, Instrumentation and Data Processing 1994; 3: 85-100. 
  8. Lohman AW. An interferometer with zone plates as beam-splitter. Optica Acta 1985; 32(12): 1465-1469. 
  9. Palchikova IG, Popova SS, Smirnov SV. Comparative study of self-image of transparent grids [In Russian]. Computer Optics 2000; 20: 60-70. 
  10. Palchikova IG, Palchikov EI. Zone plates application in the Talbot shift-interferometer for flow visualization. 9-th Millenium International Symposium on Flow Visualization, Edinburgh, Heriot-Watt University 2000: 9MISFV-42. 
  11. Ananeva GV, Afanasev II, Vasileva VI, et al. Structural, morphological and optical characteristics of potassium-gadolinium tungstate crystals. Soviet Journal of Optical Technology 1983; 8: 35-36. 
  12. Ustimenko NS, Gulin AV. New Raman lasers based on a KGd (WO4)2: Nd3+ crystal with frequency self-conversion. Quantum Electronics 2002; 32(3): 229. 
  13. Kalisky Y, Kravchik L, Labbe C. Repetitive modulation and passively Q-switching of diode-pumped Nd–KGW laser. Opt Commun 2001; 189(1-3): 113-125. 
  14. Zilenis AA, Maldutis EK, Gulbinas IA, et al. Thermooptic parameters of KGW crystals. In Book: Lasers and optical nonlinearity. Vilnius: "IFAN LitSSR" Publisher; 1987: 340-342. 
  15. Nye JF. Physical properties of crystals: Their representation by tensors and matrices. Oxford: Oxford University Press; 1957: 235-259. 
  16. Shaskolskaya MP. Acoustic crystals [In Russian]. Moscow: "Nauka" Publisher; 1982: 632. 
  17. Mochalov IV. Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+ [In Russian]. Optical Journal 1995; 11: 4-15. 
  18. Belyaev VD, Romanova GI. Thermal conductivity and thermal expansion of KGW crystals [In Russian]. Proceedings of IV Kirovokan Scientific and Technical Conference on Synthetic Corundum 1981: 28-33. 
  19. Gulev VS, Mikerin SL, Pavlyuk AA, Yurkin AM. High-power solid-state lasers with a uniform transverse intensity distribution and a small radiation divergence [In Russian]. Avtometriya 1999; 4: 104-113. 
  20. Klaassen KB. Electronic measurement and instrumentation. Cambridge: Cambridge University Press; 1996.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20