(27) * << * >> * Russian * English * Content * All Issues

Design and investigation of color separation diffraction gratings

L.L. Doskolovich 1, 2, E.V. Tyavin 1, N.L. Kazanskiy 1, 2, O.I. Petrova 3
1Samara State Aerospace University (SSAU)
2Image Processing Systems Institute of RAS
3Togliatti State University

 PDF, 120 kB

Pages: 11-16.

Full text of article: Russian language.

Abstract:
The work of color separation diffraction gratings in the framework of rigorous electromagnetic theory is investigated. The intensities of diffraction orders are calculated depending on the magnitude of the period. The limits of applicability of the scalar approximation and the approximation of geometric optics used in the calculation of microrelief of optical elements of this type are estimated. The design of color separation gratings is developed in the framework of a rigorous theory using the gradient method. The degree of optimality of the solutions obtained in the framework of the scalar theory is estimated.

Keywords:
diffraction gratings, electromagnetic theory, scalar approximation,approximation geometric optics, color separation grating.

Citation:
Doskolovich LL, Tyavin EV, Kazanskiy NL, Petrova OI. Design and investigation of color separation diffraction gratings. Computer Optics 2005; 27: 11-16.

Acknowledgements:
This work was supported by grants of the President of the Russian Federation No. MD-210.2003.01 and No. NSh1007.2003.1, RFBR grant No. 04-01-96517 and the Russian-American program “Basic Research and Higher Education” (BRHE).

References:

  1. Dammann H. Color separation gratings. Appl Opt 1978; 17(15): 2273-2279. DOI: 10.1364/AO.17.002273. 
  2. Dammann H. Spectral characteristics of stepped-phase gratings. Optik 1979; 53: 409-417. 
  3. Farn MW, Stern MB, Veldkamp WB, Medeiros SS. Color separation by use of binary optics. Opt Lett 1993; 18(15): 1214-1216. DOI: 10.1364/ol.18.001214. 
  4. Doskolovich LL, Soifer VA, Kazanskiy NL, Perlo PP, Repetto P. Design of DOEs for multiwavelength demultiplexing and spatial focusing. Proc SPIE 2004; 5485: 98-106. DOI: 10.1117/12.564901. 
  5. Bengtsson J. Kinoforms designed to produce different fanout patterns for two wavelengths. Appl Opt 1998; 37(11): 2011-2020. DOI: 10.1364/AO.37.002011. 
  6. Levy U, Marom E, Mendlovic D. Simultaneous multicolor image formation with a single diffractive optical element. Opt Lett 2001; 26(15): 1149-1151. DOI: 10.1364/OL.26.001149. 
  7. Sales TRM, Raguin DH. Multiwavelength operation with thin diffractive elements. Appl Opt 1999; 38(14): 3012-3018. DOI: 10.1364/AO.38.003012. 
  8. Doskolovich LL, Repetto M. Design of DOEs for focusing different wavelengths. Optical Memory and Neural Network 2000; 9(1): 13-23. 
  9. Doskolovich LL. Design of DOEs for focusing of different wavelengths. Avtometriya 2000; 3: 99-108. 
  10. Doskolovich LL. Design of spectral arrays. Proceedings of the Second Baikal School on Fundamental Physics 1999; 1: 287-290. 
  11. Peng S, Morris GM. Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings. J Opt Soc Am A 1995; 12(5): 1087-1096. DOI: 10.1364/JOSAA.12.001087. 
  12. Moharam MG, Grann EB, Pommet DA, Gaylord TK. Formulationfor stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 1995; 12(5): 1068-1076. DOI: 10.1364/JOSAA.12.001068. 
  13. Moharam MG, Pommet DA, Grann EB, Gaylord TK. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A 1995; 12(5): 1077-1086. DOI: 10.1364/JOSAA.12.001077.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20