(27) * << * >> * Russian * English * Content * All Issues

The practical application of the method of conjugate sinusoidal modes for modeling some common types of waveguides

V.V.Kotlyar 1, 2, Y.O.Shuyupova 2
1Samara State Aerospace University (SSAU)
2Image Processing Systems Institute of RAS

 PDF, 122 kB

Pages: 84-88.

Full text of article: Russian language.

Abstract:
This work is devoted to the practical application of software implementation of the method of conjugate sinusoidal modes for the study of microstructured waveguides and a model of a weakly directing fiber, in order to verify its operability and identify restrictions on the application.

Keywords:
conjugate sinusoidal modes, waveguide, weakly directing fiber.

Citation:
Kotlyar VV, Shuyupova YO. The practical application of the method of conjugate sinusoidal modes for modeling some common types of waveguides. Computer Optics 2005; 27: 84-88.

Acknowledgements:
This work was supported by the Russian-American program “Basic Research and Higher Education” (BRHE), as well as by the presidential grant of the Russian Federation NSh-1007.2003.

References:

  1. Itoh T. Numerical technique for microwave and millimeter-wave passive structures. New York: Wiley-Interscience; 1989. ISBN: 978-0-471-62563-6. 
  2. Sudbo ASv. Film mode matching: a versatile method for mode film calculations in dielectric waveguides. Pure Appl Opt 1993; 2(3): 211-233. DOI: 10.1088/0963-9659/2/3/007. 
  3. Sudbo AS. Improved formulation of the film mode matching method for mode film calculations in dielectric waveguides. Pure Appl Opt 1994; 3(3): 381-388. DOI: 10.1088/0963-9659/3/3/021. 
  4. Kotlyar VV, Shuyupova YO. Calculation of the spatial optical waveguide modes with inhomogeneous cross-sections using the sinusoidal mode matching method [In Russian]. Computer Optics 2003; 25: 41-48. 
  5. Rogge U, Pregla R. Method of lines for the analysis of dielectric waveguides. J Light Technol 1993; 11(12): 2015-2020. DOI: 10.1109/50.257964. 
  6. Sztefka G, Nogling HP. Bidirectional eigenmode propagation for large refractive index steps. IEEE Photonics Technol Lett 1993; 5(5): 554-557. DOI: 10.1109/68.215279. 
  7. Rahman BMA, Davies JB. Finite-Elements Solution of integrated optical waveguides. J Light Technol 1984; 2(5): 682-687. DOI: 10.1109/JLT.1984.1073669. 
  8. Koshiba M, Maruyama S, Hirayama K. A vector finite element method with the high-order mixed-interpolation-type triangular elements for optical waveguiding problems. J Light Technol 1994; 12(3): 495-502. DOI: 10.1109/50.285332. 
  9. Lusse P, Stuwe P, Schule J, Unger H-G. Analysis of vectorial mode fields in optical waveguides by a new finite difference method. J Light Technol 1994; 12(3): 487-494. DOI: 10.1109/50.285331. 
  10. Hadley GR, Smith RE. Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions. J Light Technol 1995; 13(3): 465-469. DOI: 10.1109/50.372444. 
  11. Lin P-L, Li B-J. Semivectorial Helmholtz beam propagations by Lanczos reduction. IEEE J Quantum Electron 1993; 29(8): 2385-2389. DOI: 10.1109/3.245570. 
  12. Lee P-C, Voges E. Three dimensional semi-vectorial wide-angle beam propagation method. J Light Technol 1994; 12(2): 215-225. DOI: 10.1109/50.350601.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20