An LSFR-CNS generator: analytical study of distribution uniformity
A.N. Kalouguine

Image Processing Systems Institute оf the RAS,
Samara State Aerospace University (SSAU)

Full text of article: Russian language.

Abstract:
This paper proposes a method of quality analytical study of distribution uniformity of a multidimensional pseudorandom sequence at outlet of an LFSR-CNS generator. Asymptotic estimates are given to deviation of generated distribution from uniform distribution in off-peak period of the generator.

Key words:
distribution uniformity, asymptotic estimates,  pseudorandom sequence generator.

Citation:
Kalouguine AN. An LSFR-CNS generator: analytic study of distribution uniformity [In Russian]. Computer Optics 2007; 31(1): 58-62.

References:

  1. Kalouguine AN. Modification of multidimensional pseudorandom sequences using a pair of dual LFSR-CNS generators [In Russian]. Computer Optics 2006; 28: 112-118.
  2. Kalouguine AN. 3D generalization for the LFSR random point generator [In Russian]. Computer Optics 2005; 27: 131-134.
  3. Kuipers L, Niederreiter H. Uniform distribution of sequences [Russian translation]. Moscow: “Nauka” Publisher, 1985: 408 p.
  4. Chernov VM. Fast uniform distribution of sequences for fractal sets. Proceedings of International Conference on Computer Vision and Graphics. Warsaw, Poland, Computational Imaging And Vision Series, Kluwer Academic Press, 2004.
  5. Ferrenberg AM, Landau DP, Wong YJ. Monte Carlo simulations: Hidden errors from ''good'' random number generators. Phys. Rev. Lett. 1992; 69: 3382.
  6. Kalouguine AN, Chernov VM. 3D generalization for LFSR random point Generator. Proceedings of the Second IASTED Int. Multi-Conference "Signal and Image Processing" June 20-24. Novosibirsk, Russia, 2005; 122-125.
  7. Kátai I. Generalized Number Systems in Euclidean Spaces. Mathematical and Computer Modeling 2003; 38: 883- 892.
  8. Kovács A. Generalized binary number systems. Annales Univ. Sci. Budapest, Sect. Comp. 2001; 20: 195-206.
  9. Kovács A. On number expansions in lattices, Proc. 5th Internation Conference on Applied Informatics, Eger, Hungary, 2001.
  10. Lidl R, Niederreiter H. Finite Fields. Addison-Wesley, Reading, Massachussets, 1983.
  11. Niederreiter H. Random Number Generation and Quasi Monte Carlo Methods. SIAM CBMS-NF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1992.
  12. Hellekalek P, Larcher G. Random and Quasi-Random Point Sets. Lecture notes in statistics 1998; 138.
  13. Vattulainen I. Framework for testing random numbers in parallel calculations. Phys. Rev. E 1999; 59(6): 7200.
  14. Coddington P. Random Number Generators for Parallel Computers. NHSE Review, Second Issue, Northeast Parallel Architectures Center, 1996. http://nhse.cs.rice.edu/ NHSEreview/RNG/.
  15. Hellekalek P. Don’t trust parallel Monte-Carlo. http://random.mat.sbg.ac.at/.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20