An LSFR-CNS generator: analytical study of distribution uniformity
A.N. Kalouguine
Image Processing Systems Institute оf the RAS,
Samara State Aerospace University (SSAU)
Full text of article: Russian language.
Abstract:
This paper proposes a method of quality analytical study of distribution uniformity of a multidimensional pseudorandom sequence at outlet of an LFSR-CNS generator. Asymptotic estimates are given to deviation of generated distribution from uniform distribution in off-peak period of the generator.
Key words:
distribution uniformity, asymptotic estimates, pseudorandom sequence generator.
Citation:
Kalouguine AN. An LSFR-CNS generator: analytic study of distribution uniformity [In Russian]. Computer Optics 2007; 31(1): 58-62.
References:
- Kalouguine AN. Modification of multidimensional pseudorandom sequences using a pair of dual LFSR-CNS generators [In Russian]. Computer Optics 2006; 28: 112-118.
- Kalouguine AN. 3D generalization for the LFSR random point generator [In Russian]. Computer Optics 2005; 27: 131-134.
- Kuipers L, Niederreiter H. Uniform distribution of sequences [Russian translation]. Moscow: “Nauka” Publisher, 1985: 408 p.
- Chernov VM. Fast uniform distribution of sequences for fractal sets. Proceedings of International Conference on Computer Vision and Graphics. Warsaw, Poland, Computational Imaging And Vision Series, Kluwer Academic Press, 2004.
- Ferrenberg AM, Landau DP, Wong YJ. Monte Carlo simulations: Hidden errors from ''good'' random number generators. Phys. Rev. Lett. 1992; 69: 3382.
- Kalouguine AN, Chernov VM. 3D generalization for LFSR random point Generator. Proceedings of the Second IASTED Int. Multi-Conference "Signal and Image Processing" June 20-24. Novosibirsk, Russia, 2005; 122-125.
- Kátai I. Generalized Number Systems in Euclidean Spaces. Mathematical and Computer Modeling 2003; 38: 883- 892.
- Kovács A. Generalized binary number systems. Annales Univ. Sci. Budapest, Sect. Comp. 2001; 20: 195-206.
- Kovács A. On number expansions in lattices, Proc. 5th Internation Conference on Applied Informatics, Eger, Hungary, 2001.
- Lidl R, Niederreiter H. Finite Fields. Addison-Wesley, Reading, Massachussets, 1983.
- Niederreiter H. Random Number Generation and Quasi Monte Carlo Methods. SIAM CBMS-NF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1992.
- Hellekalek P, Larcher G. Random and Quasi-Random Point Sets. Lecture notes in statistics 1998; 138.
- Vattulainen I. Framework for testing random numbers in parallel calculations. Phys. Rev. E 1999; 59(6): 7200.
- Coddington P. Random Number Generators for Parallel Computers. NHSE Review, Second Issue, Northeast Parallel Architectures Center, 1996. http://nhse.cs.rice.edu/ NHSEreview/RNG/.
- Hellekalek P. Don’t trust parallel Monte-Carlo. http://random.mat.sbg.ac.at/.
© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20