Signal decomposition algorithms based on nonseparable wavelet transforms
A.M. Belov

Image Processing Systems Institute оf the RAS,
Samara State Aerospace University (SSAU)

Full text of article: Russian language.

Abstract:
This paper considers two signal decomposition algorithms based on generalized nonseparable Haar wavelet transforms. A peculiar feature of these wavelet transforms is that they are based on fundamental domains of conical number systems in imaginary quadratic fields.

Key words:
Haar wavelet transform, conical number systems, signal decomposition.

Citation:
Belov AM. Signal decomposition algorithms based on nonseparable wavelet transforms [In Russian]. Computer Optics 2007; 31(1): 63-66.

References:

  1. Mendivil F, Piché D. Two Alghoritms for NonSeparable Wavelet Transforms and Applications to Image Compression. Fractals: Theory and Applications in Engineering. Springer-Verlag, 1999.
  2. Grochenig K, Madych WR. Multiresolution Analysis, Haar Bases and Self-Similar Tilings of Rn. IEEE Trans. Inform. Theory 1992; 38: 556-568.
  3. Piché DG. Complex Bases, Number Systems and Their Application to Fractal-Wavelet Image Coding. PhD in Applied Mathematics thesis. Ontario, Canada: University of Waterloo, 2002.
  4. Belov AM. Application of canonical number systems in the construction of non-separable Haar-type wavelets [In Russian]. Computer Optics 2006; 28: 119-123.
  5. Katai I, Kovacs B. Canonical number systems in imaginary quadratic fields. Acta Math. Acad. Sci. Hungaricae 1981; 37: 159-164.
  6. Katai I, Szabo J. Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 1975; 37: 255- 260.
  7. Kovacs A. Generalized binary number systems. Annales univ. Sci. Budapest, Sect. Comp. 2001; 20: 195-206.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20