Analysis of light diffraction on cylindrical micro-optical elements using galerkin finite element and boundary element method
D.V. Nesterenko, V.V. Kotlyar
Image Processing Systems Institute оf the RAS,
Samara State Aerospace University (SSAU)
Full text of article: Russian language.
Abstract:
The problem of diffraction of a plane electromagnetic wave is considered for a two-dimensional (cylindrical) object with absorption that is comparable in size to the wavelength. To get an approximate solution of this problem, a hybrid Galerkin finite and boundary element method is developed. The relative-error dependency of the hybrid method is studied as illustrated by diffraction modeling at dielectric and conducting cylinders.
Key words:
cylindrical micro-optics, Galerkin finite element method.
Citation:
Nersterenko DV, Kotlyar VV. Analysis of light diffraction on cylindrical micro-optical elements using Galerkin finite element and boundary element method [In Russian]. Computer Optics 2007; 31(2): 9-15.
References:
- Montiel F, Neviere M. Differential theory of gratings: extension to deep gratings of arbitrary profile and permittivity through the R-matrix propagation algorithm. J. Opt. Soc. Am. 1994; 11: 3241-3250.
- Taflove A. Computational electromagnetics: the finitedifference time domain method. Artech House, Boston, 1995.
- Golovashkin DL, Degtyarev AA, Soifer VA. Modeling the waveguide optical radiation propagation using the electromagnetic theory [In Russian]. Computer Optics 1997; 17: 5-9.
- Brebbia CA. The boundary Element Method for Engineers. Pentech Press, London; Halstead Press, New York, 1978.
- Choi MK. Numerical calculation of light scattering from a layered sphere by the boundary-element method. J. Opt. Soc. Am. 2001; 18(3): 577-583.
- Brebbia CA, Telles JCF, Wrobel LC. Boundary element techniques [Russian translation]. Moscow: “Mir” Publisher, 1987; 524 p.
- Brebbia CA, Telles JCF, Wrobel LC. Boundary element techniques [Russian translation]. Moscow: “Mir” Publisher, 1987; 104-107.
- Brebbia CA, Walker S. Boundary element techniques in engineering [Russian translation]. Moscow; “Mir” Publisher, 1982; 248 p.
- Davies JB. Finite element analysis of waveguides and cavities – a review. IEEE Trans. Magn. 1993; 29: 1578–1583.
- Lichtenberg B, Gallagher N. Numerical modeling of diffractive devices using the finite element method. Opt. Eng. 1994; 33(11): 3518.
- Wei X, Wachters AJH, Urbach HP. Finite-element model for three-dimensional optical scattering problems. J. Opt. Soc. Am. A. 2007; 24(3): 866-881.
- Koshiba M, Saitoh K. Finite-element analysis of birefringence and dispersion properties in actual and idealized holeyfiber structures. App. Opt. 2003; 42(31).
- Blaike RJ, McNab SJ. Evanescent interferometric lithography. App. opt. 2001; 40(4): 1692-1698.
- Voznesensky N. Simulation model for light propagation through nanometer-sized structures. Optical Memory and Neural Networks 2000; 9(3): 175-183.
- Prather DW, Mirotznik MS, Mait JN. Boundary integral methods applied to the analysis of diffractive optical elements. J. Opt. Soc. Am. 1997; 14: 34-43.
- Tanaka M, Tanaka K. Computer simululation for twodimensional near-field optics with use of a metal-coated dielectric probe. J. Opt. Soc. Am. 2001; 18(4): 919-925.
- Paulus M, Martin OJF. Light propagation and scattering in stratified media: a Green’s tensor approach. J. Opt. Soc. Am. 2001; 18(4): 854-861.
- Dou WB, Yung EKN. Diffraction of an electromagnetic beam by an aperture in a conducting screen. J. Opt. Soc. Am. 2001; 18(4): 801-806.
- Lee J-F, Palandech R, Mittra R. Modeling threedimensional discontinuities in waveguides using nonorthogonal FDTD algorithm. IEEE Trans. Microwave Theory Tech. 1992; 40: 346-352.
- Prather DW, Shi S. Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric dif-fractive optical elements. J. Opt. Soc. Am. 1999; 16(5): 1131-1142.
- Shi S, Tao X, Yang L, Prather DW. Analysis of diffractive optical elements using a nonuniform finite-difference time-domain method. Opt. Eng. 2001; 40(4): 503-510.
- Gruzdev V, Gruzdeva A. Finite-difference timedomain modeling of laser beam propagation and scattering in dielectric materials. Pro-ceedings of SPIE 2001; 4436: 27–38.
- Berenger GP. A perfectly matched layer for the absorption of electromagnetic waves. J. of Comp. Phys. 1994; 114: 185–200.
- Mirotznik M, Prather D, Mait J. A hybrid finite elementboundary element method for the analysis of diffractive elements. Journal of Modern Optics 1996; 43(7): 1309-1321.
- Ilyinsky AS, Kravtsov VV, Sveshnikov AG. Mathematical models of electrodynamics [In Russian]. Moscow: “Vysshaya shkola” Pub-lisher, 1991: 223 p.
- Kotlyar VV, Nesterenko DV. A finite element method in the problem of light diffraction by micro-optics. Optical Memory and Neural Networks 2000; 9(3): 209-219.
- Kotlyar VV, Nesterenko DV. Analysis of light diffraction by binary micro-optics using a combination of boundary element method and finite element method. Proceedings of SPIE 2001; 4242: 125-132.
- Kotlyar VV, Nesterenko DV. Diffraction of an electromagnetic wave on a circular dielectric cylinder: calculation by analytical formulae using the finite element method [In Russian]. Physics of wave processes and radio engineering systems. Samara: Povolzhskiy
- State University of Telecommunications and Informatics 2000; 3(3-4): 25-28.
- Nesterenko DV, Kotlyar VV. Hybrid Galerkin finite element and boundary element method for analyzing TM-polarized plane waves on cylinder optical elements [In Russian]. Computer Optics 2002; 24: 17-25.
- Colton D, Kress R. Integral equation methods in scattering theory. John Wiley & Sons, New York, 1983.
© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20