Photonic-crystal Mikaelian lens
Ya.R. Triandaphilov, V.V. Kotlyar

Image Processing Systems Institute оf the RAS, Samara, Russia,
Samara State Aerospace University (SSAU), Samara, Russia

Full text of article: Russian language.

Abstract:
Mode solutions are obtained in the form of a hyperbolic secant for the two-dimensional gradient medium with the refraction index in the form of the hyperbolic secant too. A photonic crystal (PhC) analog of a cylinder Mikaelian gradient lens is founded, and the comparative numerical simulation of diffraction of a plane wave is conducted on both microlenses with the help of the two-dimensional FDTD-method.

Key words:
2D photonic-crystal lens, Mikaelian gradient lens, microoptics.

Citation:
Triandaphilov YaR, Kotlyar VV. Photonic-crystal Mikaelian lens [In Russian]. Computer Optics 2007; 31(3): 27-31.

References:

  1. Taflove A. Computational Electrodynamics: the finitedifference time-domain method. М.: Artech House, Inc., 1995; 597 p.
  2. Pernice WH, Payne FP, Gallagher DF. Numerical investigation of field enhancement by metal nano-particles using a hybrid FDTD-PSTD algorithm. Optics Express 2007; 15: 11433-11443.
  3. Kim JH, Chrostowski L, Bisaillon E, Plant DV. DBR, sub-wavelength grating, and photonic crystal slab FabryPerot cavity design using phase analysis by FDTD. Optics Express 2007; 15: 10330-10339.
  4. Yablonovitch E. Inhibited spontaneous emission in solidstate physics and electronics. Phys. Rev. 1987; 58: 2059-2062.
  5. Hugonin JP, Lalanne P, White TP, Krauss TF. Coupling into slow-mode photonic crystal waveguides. Opt. Lett. 2007; 32: 2639-2640.
  6. Kwan KC, Tao XM, Peng GD. Transition of lasing modes in disordered active photonic crystals. Opt. Lett. 2007; 32: 2720-2722.
  7. Zabelin V, Dunbar LA, Thomas NL, Houndre R, Kotlyar MV, O’Faolain L, Krauss TF. Self-collimating photonic crystal polarization beam splitter. Opt. Lett. 2007; 32: 530-532.
  8. Li Y, Jin J. Fast full-wave analysis of large-scale threedimensional photonic crystal device. J. Opt. Soc. Am. B 2007; 24: 2406-2415.
  9. Mikaelian AL. Application of medium properties for wave focusing [In Russian]. Proceedings of the Academy of Sciences of the USSR 1951; 81: 569-571.
  10. Snyder AW, Mitchell DJ. Spatial solitons of the powerlaw nonlinearity. Opt. Lett. 1993; 18: 101-103.
  11. Alimenkov IV. Exactly solvable mathematical models in nonlinear optics [In Russian]. Computer Optics 2005; 28: 45-54.
  12. Alimenkov IV. The nonlinear Schroedinger equation in three spatial variables [In Russian]. Computer Optics 2005; 28: 55-59.
  13. Yee KS. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas and Propagation. 1966; AP-14: 302-307.
  14. Moore G. Absorbing boundary conditions for the finitedifference approximation of the time-domain electromagnetic field equations. IEEE Trans. Electromagnetic Compatibility 1981; 23: 377-382.
  15. Berenger JP. A perfectly matched layer for the absorption of electromagnetic waves. Computational Physics 1994; 114: 185-200.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20