Sharp focusing of radially polarized light with microlenses
V.V. Kotlyar, A.A. Kovalev, S.S. Stafeev

Image Processing Systems Institute of the RAS,
Samara State Aerospace University

Full text of article: Russian language.

Abstract:
Based upon the radial FDTD-method developed, we showed numerically that super-resolution can be achieved by focusing a radially polarized laser beam with a cylindrical gradient Michaelian microlens and conical microaxicon. The focal spot areas (defined as areas where the intensity exceeds its half-maximum) in these cases equal to 0.152λ2 and 0.096λ2 respectively. These areas are less than areas, experimentally obtained with microobjective – 0.160λ2, parabolic mirror – 0.134λ2, minimal theoretically predicted area – 0.101λ2, and all the more less than diffraction limit (Airy disk area) – 0.204λ2.

Key words:
radial FDTD-method, sharp focusing of light, radially polarized light, conical microaxicon, Michaelian lens, minimal area of focal spot.

Citation: Kotlyar VV, Kovalev AA, Stafeev SS. Sharp focusing of radially polarized light with microlenses. Computer Optics 2008; 32(2): 155-67.

References:

  1. Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 2003; 91: 233901.
  2. Davidson N, Bokor N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. Opt. Lett. 2004; 29(12): 1318-1320.
  3. Borghi R, Santarsiero M. Nonparaxial propagation of spirally polarized optical beams. J. Opt. Soc. Am. A 2004; 21(10): 2029-2037.
  4. Passilly N, Denis RS, Ait-Ameur K. Simple interferometric technique for generation of a radially polarized light beam. J. Opt. Soc. Am. A 2005; 22(5): 984-991.
  5. Jabbour TG, Kuebler SM. Vector diffraction analysis of high numerical aperture focused beams modified by two- and three-zone annular multi-phase plates. Opt. Express 2006; 14(3): 1033-1043.
  6. Kozawa Y, Sato S. Focusing property of a double-ring-shaped radially polarized beam. Opt. Lett. 2006; 31(6): 820-822.
  7. Zhan Q. Properties of circularly polarized vortex beams. Opt. Lett. 2006; 31(7): 867-869.
  8. Deng D. Nonparaxial propagation of radially polarized light beams. J. Opt. Soc. Am. B 2006; 23(6): 1228-1234.
  9. Salamin YI. Fields of a radially polarized Gaussian laser beam beyond the paraxial approximation. Opt. Lett. 2006; 31(17): 2619-2621.
  10. Deng D. Propagation of radially polarized elegant light beams. J. Opt. Soc. Am. B 2007; 24(3): 636-643.
  11. Grosjean T, Courjon D, Banier C. Smallest lithographic marks generated by optical focusing systems. Opt. Lett. 2007; 32(8): 976-978.
  12. Kozawa Y, Sato S. Sharper focal spot formed by higher-order radially polarized laser beams. J. Opt. Soc. Am. A 2007; 24(6): 1793-1798.
  13. Lerman GM, Levy U. Tight focusing of spatial variant vector optical fields with elliptical symmetry of linear polarization. Opt. Lett. 2007; 32(15): 2194-2196.
  14. Yan S, Yao B. Description of a radially polarized LaguerreGauss beam beyond the paraxial approximation. Opt. Lett. 2007; 32(22): 3367-3369.
  15. Yew EYS, Sheppard CJR. Tight focusing radially polarized Gaussian and Bessel-Gauss beams. Opt. Lett. 2007; 32(23): 3417-3419.
  16. Kalosha VP, Golub I. Toward the subdiffraction focusing limit of optical superresolution. Opt. Lett. 2007; 32(24): 3540-3542.
  17. Stadler J. Tighter focusing with a parabolic mirror. Opt. Lett. 2008; 33(7): 681-683.
  18. Witkowska A. All-fiber LP11 mode convertors. Opt. Lett. 2008; 33(4): 306-308.
  19. Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Forces in optical tweezers with radially and azimuthally polarized trapping beams. Opt. Lett. 2008; 33(2): 122-124.
  20. Yonezawa K, Kozawa Y, Sato S. Focusing of radially and azimuthally polarized beams through a uniaxial crystal. J. Opt. Soc. Am. A 2008; 25(2): 468-472.
  21. Ohtaka Y. Sidelobe reduction of tightly focused radially higher-order Laguerre-Gaussian beams using annular masks. Opt. Lett. 2008; 33(6): 617-619.
  22. Sheppard CJR, Alonso MA, Moore NJ. Localization measures for highaperture wave fields based on pupil moments. J. Opt. A: Pure Appl. Opt. 2008; 10: 033001.
  23. Triandaphilov YR, Kotlyar VV. Photonic crystal Mikaelian lens. Opt. Mem. Neur. Net. (Inform. Opt.) 2008; 17(1): 1-7.
  24. Minin IV, Minin OV. Investigation of the resolution of phase correcting Fresnel lenses with small values of F/D and subwavelength focus. Computer Optics 2006; 30: 65-68.
  25. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic systems. Proc. R. Soc. London, 1959;  A253: 358-379.
  26. Prudnikov AP, Brychkov YuA, Marichev OI. Intervals and Series. Special functions [In Russian]. Moscow: “Nauka” (Science) Publisher; 1983.
  27. Prather DW, Shi S. Formulation and application of the finitedifference time-domain method for the analysis of axially symmetric diffractive optical elements. J. Opt. Soc. Am. A 1999; 16(5): 1131-1141.
  28. Yee KS. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenna and Prop. 1966; AP-14: 302-307.
  29. Taflove A. Computational Electrodynamics: The Finite Difference Time-Domain Methods.  Artech House, Norwood, MA, 1995.
  30. Mikaelian AL. Application of stratified medium properties for waves focusing [In Russian].  Doklady Akademii Nauk SSSR (Proceedings of the Academy of Sciences of the USSR) 1951; 81: 569-571.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20