Bounded one-dimensional airy beams: laser fan
S.N. Khonina, S.G. Volotovsky

Image Processing Systems Institute of the RAS,
Samara State Aerospace University

Full text of article: Russian language.

Abstract:
Recently [Siviloglou G. A., et al, Physical Review Letters 99, 213901 (2007)] a new type of laser beams have been physically implemented, namely, the exponential Airy beams which approximately retain their strucutre at a certain distance upon propagation in free space, with the propagation path of the major maximum being deflected. The intensity pattern of the propagating beam looks like a rainbow.
We consider another type of bounded Airy beams, which are generated in the transverse cross-section of the whispering gallery mode resonator. A numerical comparison is made between the propagation of the bounded Airy beams, the exponential Airy beams, and Airy-Gaussian beams. The beam under study is shown to manifest higher immunity to diffraction and retain the oscillating structure of an ideal distribution. However it should be noted that the intensity pattern that these beams produce looks more like a fan rather than a rainbow.

Key words:
Airy functions, truncated Airy beams, whispering gallery modes resonator, nondiffracting beams of free space.

Citation: Khonina SN, Volotovsky SG. Bounded one-dimensional Airy beams: laser fan. Computer Optics 2008; 32(2): 168-75.

References:

  1. http://www.physorg.com/news115556629.html.
  2. Siviloglou G.A. Observation of Accelerating Airy Beams. Physical Review Letters 2007; 99: 213901.
  3. Durnin J, Miceli JJ, Eberly JH. Diffraction free beams. Phys. Rev. Lett. 1987; 58(15): 1499-1501.
  4. Durnin J, Miceli JJ, Eberly JH. Comparison of Bessel and Gaussian beams. Opt. Lett. 1988; 13(2): 79-80.
  5. Arlt J. Optical micromanipulation using Bessel light beams. Opt. Comm. 2001; 197: 239-245.
  6. Kotlyar VV, Skidanov RV, Khonina SN. Non-contact precision measurement of linear displacement using DOE forming Bessel modes [In Russian]. Computer Optics 2001; 21: 102-104.
  7. Khonina SN. Rotation of microparticles with Bessel beams generated by diffractive elements. Journal of Modern optics 2004; 51(14): 2167-2184.
  8. Berry МV, Balazs NL. Nonspreding wave packets. Am. J. Phys. 1979; 47(3): 264-267.
  9. Abramowitz M, Stegun IA. Handbook of Mathematical Functions. Dover, 1972.
  10. Siviloglou GA, Christodoulides DN. Accelerating finite energy Airy beams. Opt. Letters 2007; 32(8): 979-981.
  11. Banders MA, Gutierrez-Vega JC. Airy-Gauss beams and their transformation by paraxial optical systems. Opt. Express 2007; 15(25): 16719-16728.
  12. Marhic ME, Kwan LI, Epstein M. Whispering-Gallery C02 Laser. IEEE J. Quant. Electr. 1979; QE-15(6): 487-490.
  13. Grossman JG, Casperson LW, Stafsudd OM. Radio-frequency-excited carbon dioxide metal waveguide laser. App. Opt. 1983; 22(9): 1298-1305.
  14. Al-Mashaabi FS, Casperson LW. Direct current-excited cw CO2 metal waveguide laser. App. Opt. 1989; 28(10): 1899-1903.
  15. Mohageg M, Savchenkov А, Maleki L. High-Q optical whispering gallery modes in elliptical LiNbO3 resonant cavities. Opt. Express 2007; 15(8): 4869-4875.
  16. Grossman JG. Propagation of Airy-Hermite-Gaussian waveguide modes in free space. App. Opt. 1984; 23(1): 48-52.
  17. Casaubon JI, Cosentino JP, Buep AH. Variation Principle for a Linear Potential. Turk. J. Phys. 2007; 31: 117-121.
  18. Pignol G, Protasov K, Nesvizhevsky V. Spontaneous emission of gravitation by a quantum bouncer 2007; arXiv:quant-ph/0702256v1.
  19. Khonina SN.  Levelling the focal spot intensity of the focused Gaussian beam. Journal of Modern Optics 2000; 47(5): 883-904.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20