Particular cases of hypergeometric laser beams in optical micromanipulation
V.V. Kotlyar, A.A. Kovalev, R.V. Skidanov, S.N. Khonina

Image Processing Systems Institute of the RAS,
Samara State Aerospace University

Full text of article: Russian language.

Abstract:
We derive explicit analytical expressions to describe paraxial light beams that represent a particular case of the hypergeometric (HyG) laser beams [J.Opt.Soc.Am.A, v.25, p.262-270 (2008)]. Among these are modified quadratic Bessel-Gaussian (mQBG) beams, hole Gaussian optical vortices (HGOV), modified elegant Laguerre-Gaussian beams (meLG), and gamma-hypergeometric (gHyG) beams. Using e-beam microlithography, a binary diffractive optical element capable of producing near-HyG beams is synthesized. Theory and experiment are in sufficient agreement. A possibility of rotating dielectric microparticles in the bright diffraction ring of the HyG beam is experimentally demonstrated.

Key words:
hypergeometric beam, hypergeometric mode, diffractive optical element, optical rotation of dielectric microparticles, confluent function (Kummer function), logarithmic axicon.

Citation: Kotlyar VV, Kovalev AA, Skidanov RV, Khonina SN. Particular cases of hypergeometric laser beams in optical micromanipulation. Computer Optics 2008; 32(2): 180-6.

References:

  1. Kotlyar VV. Hypergeometric modes. Opt. Lett. 2007; 32: 742-744.
  2. Karimi E. Hypergeometric-Gaussian modes. Opt. Lett. 2007; 32: 3053-3055.
  3. Kotlyar VV, Kovalev AA. Family of hypergeometric laser beams. J. Opt. Soc. Am. A. 2008; 25: 262-270.
  4. Bandres M.A, Gutiérrez-Vega JC. Circular beams. Opt. Lett. 2008; 33: 177-179.
  5. Siegman AE. Lasers. University Science 1986.
  6. Takenaka T, Yokota M, Fukumitsu O. Propagation of light beams beyond the paraxial approximation. J. Opt. Soc. Am. A. 1985; 2: 826-829.
  7. Caron CFR, Potvliege RM. Bessel-modulated Gaussian beams with quadratic radial dependence. Opt. Commun. 1999; 164: 83-93.
  8. Rozas D, Law CT, Swartzlander Jr. GA. Propagation dynamics of optical vortices. J. Opt. Soc. Am. B 1997; 14: 3054-3065.
  9. Kotlyar VV. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J. Opt. Soc. Am. A 2005; 22: 849-861.
  10. Handbook of Mathematical Functions. Ed. by Abramovitz M, Stegun IA. National Bureau of Standards, Applied Math. Series 1965.
  11. Durnin J, Miceli JJ, Eberly JH. Difraction-free beams. Phys. Rev. Lett. 1987; 58: 1499-1501.
  12. Gori F, Guattari G, Padovani C. Bessel-Gauss beams. Opt. Commun. 1987; 64(6): 491–495.
  13. Prudnikov AP, Brychkov YuA, Marichev OI. Integrals and Series. Special Functions [In Russian]. Moscow: “Nauka” (Science) Publisher, 1983.
  14. Methods for Computer Design of Diffractive Optical Elements. Ed. by Soifer VA..Willey & Sons, 2002.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20