Face recognition on the basis of conjugation indexes in the space of summarizing invariants
N.E. Kozin, V.A. Fursov
S. P. Korolyov Samara State Aerospace University,
Image Processing Systems Institute of the RAS
Full text of article: Russian language.
Abstract:
New method for reduction of the feature space in pattern recognition is discussed. The main idea is elimination of the most spurious feature vector components. As the criterion for such informative distinction new feature called diagonal prevalence index is proposed. The efficiency in a sense of both discrimination ability and computational complexity is being discussed in comparison with other multicollinearity features. Finally, we list algorithm for the image recognition based on the diagonal prevalence idea implementation.
Key words:
multicollinearity, diagonal prevalence, feature space reduction.
Citation: Kozin NE, Fursov VA. Face recognition on the basis of conjugation indexes in the space of summarizing invariants. Computer Optics 2008; 32(3): 307-11.
References:
- Watanabe S. Karhunene-Loeve expansion and factor analysis. Theory and appendices [In Russian]. Collection of translations “Automated analysis of complex images.” Moscow: “Mir” Publisher 1969; 254-275.
- Brayan JG. The generalized discriminant function: mathematical foundation and computational routina. Harvard Educ Rev 1951; 21: 90-95
- Theodoridis S, Konstantinos K. Pattern Recognition. Academic Press, 2006.
- Tu J., Gonsales R. Principles of pattern recognition [In Russian]. Moscow: “Mir” Publisher 1978; 416.
- Duda R, Hart P. Pattern classification and scene analysis [In Russian]. Moscow: “Mir” Publisher 1976; 512 p.
- Fursov VA. Identification of models of imaging systems for the small number of observations [In Russian]. Samara, SSAU 1998; 220.
- FERET Face Database. URL: http://www.itl.nist.gov/iad/humanid/colorferet/
- Phillips Р. Overview of face recognition grand challenge. Proceedings of CVPR 2005; 947: 54.
© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20