Photonic crystal lens for coupling of two planar waveguides
V.V. Kotlyar, Ya.R. Triandofilov, A.A. Kovalev, M.I. Kotlyar, A.V. Volkov, B.O. Volodkin, V.A. Soifer, L. O’Faolain, Т. Krauss

Image Processing Systems Institute of the Russian Academy of Sciences,
S.P. Korolyov Samara State Aerospace University,
School of Physics & Astronomy at University of St. Andrews

Full text of article: Russian language.

Abstract:
We report design, fabrication and characterization of a new nanophotonic device comprising a two-dimensional photonic crystal (PhC) lens of size 3×4 μm fabricated in a silicon film of fused silica. The PhC lens is put at the output of a planar waveguide of width 4.5 μm to couple light into a planar waveguide of width 1 μm, each waveguide being of length 5 mm. A 1 μm off-axis displacement of the smaller waveguide leads to an 8-fold reduction of output light intensity, which means that the focal spot size at output of the PhC lens in silicon is less than 1 μm. The simulation has shown that the PhC lens has the maximal transmittance at 1.55 μm, with the waveguides coupling efficiency being 73%. The transmission spectrum measured has four local minima in the range 1.50-1.60 μm. The difference between the calculated and measured transmission spectrum is 29%. The focal spot size of the lens in air calculated at the FWHM is 0.32λ (where λ is the wavelength), which is less than the diffraction limit of 0.44 λ, defined by the sinc-function.

Key words:
photonic crystal lens, planar waveguides, sharp focusing of light, coupling two different waveguides, e-beam lithography.

Citation: Kotlyar VV, Triandofilov YaR, Kovalev AA, Kotlyar MI, Volkov AV, Volodkin BOl, Soifer VA, O’Faolain L, Krauss T. Photonic crystal lens for coupling of two planar waveguides. Computer Optics 2008; 32(4): 326-37.

References:

  1. Xu Y, Lee RK, Yariv A. Adiabatic coupling between conventional dielectric waveguides with discrete translational symmetry. Opt. Lett. 2000; 25(10): 755-757.
  2. Mekis A, Joannopoulos JD. Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides. J. Light Techn. 2001; 19(6): 861-865.
  3. Happ TD, Kamp M, Forchel A. Photonic crystal tapers for ultracompact mode conversion. Opt. Lett. 2001; 26(14): 1102-1104.
  4. Talneau A. Low-reflection photonic crystal taper for efficient coupling between guide sections of arbitrary widths. Opt. Lett. 2002; 27(17): 1522-1524.
  5. Almeida VR, Panepucci RR, Lipson M. Nanotaper for compact mode conversion. Opt. Lett. 2003; 28(15): 1302-1304.
  6. Bienstman P. Taper structures for coupling into photonic crystal slab waveguides. J. Opt. Soc. Am. B 2003; 20(9): 1817-1821.
  7. MacNab SJ, Moll N, Vlasov YA. Ultra-low loss photonic integrated circit with membrane-type photonic crystal waveguide. Opt. Express 2003; 11(22): 2927-2939.
  8. Barclay PE, Srinivasan K, Painter O. Design of photonic crystal waveguide for evanescent coupling to optical fiber tapers and integration with high-Q cavities. J. Opt. Soc. Am. B 2003; 20(11): 2274-2284.
  9. Orobtchouk R. High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide. Appl. Opt. 2000; 39(31): 5773- 5777.
  10. Lardenois S. Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors. Opt. Lett. 2003; 28(13): 1150-1153.
  11. Taillaert D. Grating couplers for couping between optical fiber and nanophotonic waveguides. Jap. J. Appl. Phys. 2006; 45(8): 6071- 6077.
  12. Van Laere F. Compact and high efficient grating couplers between optical fiber and nanophotonic waveguides. J. Light. Techn. 2007; 25(1): 151-156.
  13. Bachim BL, Ogunsola OO, Gaylord TK. Optical fiber-to-waveguide coupling using carbon-dioxide-laser-induced long-period fiber gratings. Opt. Lett. 2005; 30(16): 2080-2082.
  14. Prather DW. High-efficiency coupling structure for a single-line-defct photonic crystal waveguide. Opt. Lett. 2002; 27(18): 1601-1603.
  15. Kim H. High efficiency coupling technique for photonic crystal waveguides using a waveguide lens. OSA Techn. Digest: Frontiers in optics 2003; MT68.
  16. Corbett JCW, Allington-Smith JR. Coupling starlight into single-mode photonic crystal fiber using a field lens. Opt. Express 2005; 13(17): 6527-6540.
  17. Michaelis D. Micro-optical assisted high-index waveguide coupling. Appl. Opt. 2006; 45(8): 1831-1838.
  18. Kong G. Lensed photonic crystal fiber obtained by use of an arc discharge. Opt. Lett. 2006; 31(7): 894-896.
  19. Pokrovsky AL, Efros AL. Lens based on the use of left-handed materials. Appl. Opt. 2003; 42(28): 5701-5705.
  20. Fabre N. Toward focusing using photonic crystal flat lens. Opto-electronics Review 2006; 14(3): 225-232.
  21. Li C, Efros AL. Far-field imagimg by the Veselago lens made of a photonic crystal. J. Opt. Soc. Am. B 2006; 23(3): 490-497.
  22. Matsumoto T, Eom K, Baba T. Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate. Opt. Lett. 2006; 31(18): 2786-2788.
  23. Li CY, Holt JM, Efros AL. Imaging by the Veselago lens based upon a twodimensional photonic crystal with a triangular lattice. J. Opt. Soc. Am. B 2006; 23(5); 963-968.
  24. Geng T, Lin T, Zhuang S. All angle negative refraction with the effective phase index of -1. Chinese Opt. Lett. 2007; 5(6): 361-363.
  25. Asatsume T, Baba T. Abberation reduction and unique light focusing in a photonic crystal negative refractive lens. Opt. Express 2008; 16(12): 8711-8718.
  26. Fabre N. Measurement of a flat lens focusing in a 2D photonic crystal at optical wavelength. OSA Digest, CLEO/QELS 2008; CTuDD6, CA.
  27. Yang S, Hong C, Yang H. Focusing concave lens photonic crystals with magnetic materials. J. Opt. Soc. Am. A 2006; 23(4): 956-959.
  28. Luan P, Chang K. Photonic crystal lens coupler using negative refraction. Prog. In Electr. Res. 2007; 3(1): 91-95.
  29. Haxha S, AbdelMalek F. A novel design of photonic crystal lens based on negative refractive index. Prog. In Electr. Res. 2008; 4(2): 296-300.
  30. Lu Z. Three-dimensional photonic crystal flat lens by full 3D negative refraction. Opt. Express 2005; 13(15): 5592-5599.
  31. Lu Z. Experimental demonstration of negative refraction imaging in both amplitude and phase. Opt. Express 2005; 13(6): 2007-2012.
  32. Minin IV. Subwavelength diffractive photonic crystal lens. Prog. In Electr. Res. B 2008; 7: 257-264.
  33. Pshenay-Severin E. Photonic crystal lens for photonic crystal waveguide coupling. OSA Techn. Digest:CLEO 2006; CThK3.
  34. Hugonin JP. Coupling into clow-mode photonic crystal waveguide. Opt. Lett. 2007; 32(18): 2638-2640.
  35. Triandafilov YR, Kotlyar VV. Photonic crystal Michaelian lens [In Russian]. Computer Optics 2007; 31(3): 27-31.
  36. Triandafilov YR, Kotlyar VV. Photonic crystal Mikaelian lens. Opt. Mem. Neur. Net. 2008; 17(1): 1-7.
  37. Michaelian AL. Application of medium properties for wave focusing [In Russian]. Doklady AN SSSR 1951; 81: 2406-2415.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20