Fabrication of three-dimensional photonics crystals by interference lithography with low light absorption
Y.V. Miklyaev, S.V. Karpeev, P.N. Dyachenko, V.S. Pavelyev, S.D. Poletaev

South-Ural State University, Dept. of Optics and Spectroscopy,
S. P. Korolev Samara State Aerospace Univercity ,
Image Processing Systems Institute RAS

Full text of article: Russian language.

Abstract:
Polymer templates of photonic crystals are fabricated by means of interference lithography. Gratings are recorded in SU-8 photoresist by He-Cd laser radiation at 442 nm wavelength. Radiation with this wavelength corresponds to low absorption in photoresist. This allow us to get homogenious illumination in depth of the photomaterial. Optimal parameters of exposition and photoresist processing are defined for fabrication of porous structures.  The produced structures have orthorhombic symmetryd.

Key words:
photonic crystal, interference lithography, He-Cd laser, photoresist SU-8.

Citation: Miklyaev YuV, Karpeev SV, DyachenkoPN, PavelyevVS, PoletaevSD. Fabrication of three-dimensional photonics crystals by interference lithography with low light absorption. Computer Optics 2008; 32(4): 357-60.

References:

  1. Bykov VP. Spontaneous emission in a periodic structure. Sov. Phys. JETP 1972; 35: 269-273.
  2. Yablonovitch Y. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987; 58: 2059-2062.
  3. John S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987; 58: 2486-2489.
  4. Wijnhoven JEGJ, Vos WL. Preparation of photonic crystals made of air spheres in titania. Science 1998; 281: 802-804.
  5. Lin SY. A three-dimensional photonic crystal operating at infrared wavelengths. Nature 1998; 394: 251-253.
  6. Ho KM. Photonic band gaps in three dimensions: New layerby-layer periodic structures. Solid State Communications 1994; 89: 413-416.
  7. Blanco A., Chomski E, Grabtchak S. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 2000; 405: 437-440.
  8. Campbell M. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 2000; 404: 53-56.
  9. Sharp DN. Holographic photonic crystals with diamond symmetry. Phys. Rev. B 2003; 68: 205102.
  10. Ullal CK. Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures. Appl. Phys. Lett. 2004; 84: 5434-5436.
  11. Toader O, Chan TYM, John S. Photonic Band Gap Architectures for Holographic Lithography. Phys. Rev. Lett. 2004; 92: 439051-439054.
  12. Miklyaev YuV. Three dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band structure calculations. Appl. Phys. Lett. 2003; 82: 1284-1286.
  13. Pikhulya DG, Miklyaev YuV. Band structures of three-dimensional photonic crystals fabricated by interference lithography [In Russian]. Bulletin of the Russian Academy of Sciences: Physics 2006; 70: 1972-1974.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20