Simulation of 3d nanophotonics device for coupling light into planar waveguide
A.G. Nalimov, A.A. Kovalev, V.V. Kotlyar, V.A. Soifer

Image Processing Systems Institute of the RAS,
Samara State Aerospace University

Full text of article: Russian language.

Abstract:
Using the FullWAVE software (www.rsoftdesign.com) for solving Maxwell’s equations by the finite-difference FDTD-method, we simulate the performance of a three-dimensional nanophotonics device comprising a subwavelength diffraction grating, a wide and a narrow planar waveguide, and a photonic crystal (PhC) Mikaelian lens located in a thin silicon film coated on a substrate containing a three-period Bragg mirror, with each period made up of silicon + silica layer. The device is intended to couple a laser beam with the focal spot of 3 x 4.6µm2 and wavelength 1.55 µm into a planar waveguide of width 500 nm, resulting in a 125-fold “compression” of the input beam cross-section. The simulation has shown that the coupling efficiency amounts to 32% of the energy of the linearly polarized elliptic Gaussian beam focused onto the grating and 52% when a plane wave segment is incident onto the grating. For comparison, the grating-unaided coupling of light into the same device by the butt-coupling of light into the wide waveguide’s silicon film gives the efficiency as low as 8%.

Key words:
FDTD-method, photonic crystal lens, coupling two different waveguides, input light into waveguide, Bragg mirror, nanophotonics.

References:

  1. Bogaerts W. Nanophotonic waveguides and photonic crystal in Silicon-on-Insulator. Netherlands: PhD Thesis. Universitet ot Gent; 2003.
  2. Taillaert D, Bogaerts W, Bienstman P, Krauss TF, Van DP, Moerman I, Verstuyft S, De Mesel K, Baets R. An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE J. Quantum Electron 2002; 38(7): 949-55.
  3. Van Laere F, Kotlyar MV, Taillaert D, Van Thourhout, D, Krauss TF, Baets R. Compact Slanted Grating Couplers Between Optical Fiber and InP-InGaAsP Waveguides. IEEE Phot. Techn. Lett. 2007; 19(6): 396-98.
  4. Orobtchouk R, Layadi A, Gualous H, Pascal D, Koster A, Laval S. High-Efficiency Light Coupling in a Submicrometric Silicon-on-Insulator Waveguide. Appl. Opt. 2000; 39(31): 5773-7.
  5. Van Laere F, Roelkens G, Ayre M, Schrauwen J, Taillaert D, Van Thourhout D, Krauss TF, Baets R. Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides. J. Lightwave Technol. 2007; 25 (1): 151-6.
  6. Spuhler MM, Offrein BJ, Bona GL, Germann R, Massarek I, Erni D. A Very Short Planar Silica Spot-Size Converter Using a Nonperiodic Segmented Waveguide. J. Lightwave Technol 1998; 16(9): 1680-5.
  7. Chien HT, Chen CC. Focusing of electromagnetic waves by periodic arrays of air holes with gradually varying radii. Opt. Express 2006; 14(22): 10759-64.
  8. Wu Q, Gibbons JM, Park W. Graded negative index lens by photonic crystals. Opt. Express. 2008; 16(21): 16941-9.
  9. Triandafilov JR, Kotlyar VV. Mikaelian photonic crystal lens. Computer optics 2007; 31(3): 27-31.
  10. Kotlyar VV, Triandafilov JR, Kovalev AA, Kotlyar MI, Volkov AV, Volodkin BO, Soifer VA, Faolain L, Kraus T. Photonic crystal lens for two waveguides coupling. Computer optics 2008; 32(4): 326-36.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20