Modeling sharp focus radially-polarized laser mode with conical and binary microaxicons
V.V. Kotlyar, S.S. Stafeev

Image Processing Systems Institute of the RAS,
Samara State Aerospace University

Full text of article: Russian language.

Abstract:
TWith modeling based on radial R-FDTD method is shown that lighting of radially-polarized laser R-TEM01 mode with wave length λ = 1 μm by conical microaxicon with base radius 7 μm and height 6 μm configure sharp focus immediately beyond the vertex of the cone. The transverse focal spot diameter is FWHM=0.30λ, and longitudinal focal spot length is FWHMZ=0.12λ. The focal spot size is HMA=0.071λ2. By comparison, the focal spot diameter is less than the focal spot diameter for the Airy disk in 1.7 times (FWHM=0.51λ), the focal spot size is less than the focal spot size for the Airy disk in 2.87 times (HMA=0.204λ2).

Key words:
radially polarized light, sharp focusing of light, radially polarized R-TEM01 mode, minimal focal spot area, conical microaxicon, binary axicon.

References:

  1. Veselago VG. Superlens as matching device. Source: (http://arxiv.org/abs/cond-mat/0501438v1).
  2. Novotny L, Hecht B. Principles of nano-optics. Cambridge Univ Press, 2006.
  3. Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000; 85: 3966-9.
  4. Blaikie RJ, Melville DOS. Imaging through planar silver lenses in the optical near field. J Opt A: Pure Appl Opt 2005; 7(2): S176-83.
  5. Melville DOS, Blaikie RJ. Super-resolution imaging through a planar silver layer. Opt Express 2005; 13(6): 2127-34.
  6. Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005; 308(5721): 534-7.
  7. Podolskiy VA, Narimanov EE. Near-sighted superlens. Opt Lett 2005; 30(1): 75-7.
  8. Merlin R. Analytical solution of the almost-perfect-lens problem. Appl Phys Lett 2004; 84: 1290-2.
  9. Pendry JB. Perfect cylindrical lenses. Opt Express 2003; 11(7): 755-60.
  10. Podolskiy VA, Sarychev AK, Shalaev VM. Plasmon modes and negative refraction in metal nanowire composites. Opt Express 2003; 11(7): 735-45.
  11. Shalaev VM, Cai W, Chettiar UK, Yuan H-K, Sarychev AK, Drachev VP, Kildishev AV. Negative index of refraction in optical metamaterials. Opt Lett 2005; 30(24): 3356-8.
  12. Berrier A, Mulot M, Swillo M, Qiu M, Thylén L, Talneau A, Anand S. Negative refraction at infrared wavelength in a two-dimensional photonic crystal. Phys Rev Lett 2004; 93: 073902.
  13. Govyadinov AA, Podolskiy VA. Metamaterial photonic funnels for subdiffraction light compression and propagation. Phys Rev B 2006; 73: 155108.
  14. Wangberg R, Elser J, Narimanov EE, Podolskiy VA. Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media. J Opt Soc Am B 2006; 23(3): 498-505.
  15. Zubin J, Alekseyev LV, Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 2006; 14(18): 8247-56.
  16. Lin Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 2007; 315: 1686-8.
  17. Merlin R. Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing. Science 2007; 317(5840): 927-9.
  18. Liu H, Shivanand, Webb KJ. Subwavelength imaging opportunities with planar uniaxial anisotropic lenses. Opt Lett 2008; 33(21): 2568-70.
  19. Husakou A, Herrmann J. Superfocusing of light below the diffraction limit by photonic crystals with negative refraction. Opt Express 2004; 12(26): 6491-7.
  20. Wang X, Ren ZF, Kempa K. Unrestricted superlensing in a triangular two dimensional photonic crystal. Opt Express 2004; 12(13): 2919-24.
  21. Yang SY, Hong CY, Yang HC. Focusing concave lens using photonic crystals with magnetic materials. J Opt Soc Am A 2006; 23(4): 956-9.
  22. Matsumoto T, Eom K-S, Baba T. Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate. Opt Lett 2006; 31(18): 2786-8.
  23. Chien HT, Chen CC. Focusing of electromagnetic waves by periodic arrays of air holes with gradually varying radii. Opt Express 2006; 14(22): 10759-64.
  24. Wu Q, Gibbons JM, Park W. Graded negative index lens by photonic crystal. Opt Express 2008; 16(21): 16941-9.
  25. Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt Lett 2005; 30(22): 3063-5.
  26. Li JL, Ueda K, Musha M, Shirakawa A, Zhong LX. Generation of radially polarized mode in Yb fiber laser by using a dual conical prism. Opt Lett 2006; 31(20): 2969-71.
  27. Li J, Ueda K, Musha M, Shirakawa A, Zhang Z. Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain filter. Opt Lett 2007; 32(11): 1360-2.
  28. Yonezawa K, Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal. Opt Lett 2006; 31(14): 2151-3.
  29. Mehta A, Brown JD, Srinivasan P, Rumpf RC, Johnson EG. Spatially polarizing autocloned elements. Opt Lett 2007; 32(13): 1935-7.
  30. Levy V, Tsai C-H, Pang L, Fainman Y. Engineering space-variant inhomogeneous media for polarization control. Opt Lett 2004; 29(15): 1718-20.
  31. Lerman GM, Levy U. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm. Opt Lett 2008; 33(23): 2782-4.
  32. Kotlyar VV, Kovalev AA, Stafeev SS. Sharp focusing of radially polarized light using microlenses [In Russian]. Computer Optics 2008; 32(2): 155-67.
  33. Kotlyar VV, Kovalev AA, Stafeev SS. Sharp focus area of radially-polarized Gaussian beam propagation through an axicon. Prog In Electr Res C 2008; 5: 35-43.
  34. Born M, Wolf E. Principles of Optics. Pergamon Press. 1973.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20