Airy laser beams generation by binary-coded diffractive optical elements for microparticles manipulation
S.N. Khonina, R.V. Skidanov, O.Y. Moiseev

Image Processing Systems Institute of the RAS,
Samara State Aerospace University

Full text of article: Russian language.

Abstract:
The fractional method of coding is used for calculating binary phase diffractive optical elements intended for generation of Airy laser beams with various characteristics of efficiency and accuracy. Designed phase distributions are realized by a method of a liquid photolithography to made diffractive optical elements with various step of sampling. Optical elements have been experimentally investigated and used for optical capture of polystyrene balls in diameter 5 microns.

Key words:
Airy function, truncated Airy beams, binary coding, phase diffractive optical element, liquid photolithography, optical capture.

References:

  1. J. Durnin, J. J. Miceli, and J. H. Eberly, Diffraction-free beams, Phys. Rev. Lett. V. 58, n. 15, 1499-1501 (1987)
  2. A. Vasara, J. Turunen, and A. T. Friberg, Realization of general nondiffracting beams with computer-generated holograms, J. Opt. Soc. Am. A 6, 1748-1754 (1989)
  3. M. A. Bandres, J. C. Gutierrez-Vega, and S. Chavez-Cerda, Parabolic nondiffracting optical wave fields, Opt. Lett. 29(1), 44–46 (2004)
  4. Kotlyar V.V., Skidanov R.V., Khonina S.N., and Soifer V.A., Hypergeometric modes, Opt. Lett. 32, 742-744 (2007)
  5. Kotlyar V.V., Khonina S. N., Almazov A.A., Soifer V.A., Optical pure vortices and hypergeometrical modes, Computer Optics, 27, 21-28 (2005) – [in Russian].
  6. Siviloglou G. A., Broky J., Dogariu A., and Christodoulides D. N. Observation of Accelerating Airy Beams, Physical Review Letters 99, 213901 (2007).
  7. M. A. Bandres and J. C. Gutiérrez-Vega, Circular beams, Opt. Lett. 33, 177-179 (2008)
  8. Balalayev S.A., Khonina S.N., Comparison of properties of hypergeometrical and Bessel modes, Computer Optics, 31(4), 23-28 (2007) – [in Russian].
  9. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Ballistic dynamics of Airy beams, Opt. Lett. 33 (3), 207-209 (2008).
  10. Berry М.V., Balazs N.L., Nonspreding wave packets, Am. J. Phys. 47(3), 264-267 (1979)
  11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).
  12. Siviloglou G.A., Christodoulides D.N., Accelerating finite energy Airy beams, Opt. Letters 32(8), 979-981 (2007)
  13. Banders M.A., Gutierrez-Vega J.C., Airy-Gauss beams and their transformation by paraxial optical systems, Opt. Express 15(25), 16719-16728 (2007)
  14. Khonina S.N., Volotovsky S.N., Bounded 1D Airy beams: laser fan, Computer Optics, 32(2), 168-174 (2008) – [in Russian].
  15. Marhic M. E., Kwan L. I., Epstein M., Whispering-Gallery C02 Laser, IEEE J. Quant. Electr. QE-15(6), 487-490 (1979).
  16. Grossman J. G., Casperson L. W., and Stafsudd O. M., Radio-frequency-excited carbon dioxide metal waveguide laser, App. Opt. 22(9), 1298-1305 (1983).
  17. Al-Mashaabi F. S. and Casperson L. W., Direct current-excited CW CO2 metal waveguide laser, App. Opt. 28(10), 1899-1903 (1989).
  18. Kotlyar V. V., Khonina S. N., Soifer V.A., Method of partial coding for calculation of phase formers of Gauss-Hermite modes, Avtometria, 6, 74-83 (1999). – [in Russian].
  19. Khonina S. N., Balalayev S. A., Skidanov R. V., Kotlyar V. V., Paivanranta B., Turunen J., Encoded binary diffractive element to form hyper-geometric laser beams, J. Opt. A: Pure Appl. Opt. 11 (2009) 065702 (7pp)
  20. Casaubon J. I., Cosentino J. P. and Buep A.H., Variation Principle for a Linear Potential, Turk. J. Phys. 31, 117 – 121 (2007).
  21. David C. Chu and J. W. Goodman, Spectrum Shaping with Parity Sequences, App. Opt. 11(8), 1716-1724 (1972).
  22. 22. Soifer V.A. Digital holography and application (Kuibyshev, 1978). – [in Russian].

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20