Automodulation of one-dimensional waves based on nonlinear schredingger equation with non-kerr nonlianerity
I.V. Alimenkov

Samara State Aerospace University

Full text of article: Russian language.

Abstract:
It is shown that nonlinear Schredinger equation with non-Kerr nonlinearity has a localized solution moving with constant velocity without dispersion. This solution is found by straight method based on Hamilton systems theory and it contains the well-known solution of cubic nonlinear Schredinger equation.

Key words:
nonlinear Schredinger equation, nonlinearity 5thorder, theory of Hamilton systems, canonical transformations, Hamilton-Jacoby equation, soliton solutions for degree nonlinearity.

References:

  1. Takhtajan L.A., Faddeev L.D. Hamilton approach in theory of solitons. – Moscow: Nauka, 1986, - 528p.
  2. Stepanov V.V. Course of differential equations. – Moscow: GITTL, 1953. – 468p.
  3. Schmutzer E. Grundprinzipien der klassischen Mechanik und der klassischen Feldtheorie (kanonischer Apparat). – Berlin: VEB Deutscher Verlag der Wissenschaften, 1973. – 160p.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20