Fracxicon - diffractive optical element with conical focal domain
S.N. Khonina
, S.G. Volotovsky

Image Processing Systems Institute of the RAS,
S. P. Korolyov Samara State Aerospace University

Full text of article: Russian language.

Abstract:
Parameters of a focal spot and depth of the field formed by DOE which phase function represents a tandem of lens+axicon (lensacon) are theoretically investigated. In this case in comparison with linear axicon the focal depth decreases and the focal spot size becomes variable and can diminish much more strongly than allow each of optical elements of a tandem separately.
The new type of phase DOE – fracxicon – optical element having fractional degree of dependence on radial coordinate is entered. Depending on value of fractional degree fracxicon allows to form reducing in scale Bessel beams (similarly as lensacon) and increasing in scale nondiffractive beams, that is close on properties to logarithmic axicon, but without singularity in the central part of an optical element
.

Key words: diffractive linear axicon, lensacon, diffractive fracxicon, size of a focal spot, depth of a field.

References:

  1. A. E. Bereznyi, A. M. Prokhorov, I. N. Sisakyan and V. A. Soifer, Bessel optics, DAN SSSR, V. 274, No. 4, pp.802-805 (1984). – [in Russian].
  2. A. E. Bereznyi, I. N. Sisakyan, Binary elements of Bessel-optics, Computer optics, iss. 1, pp. 132-133 (1987). – [in Russian].
  3. J. Durnin, J. J. Miceli, and J. H. Eberly, Diffraction-free beams, Phys. Rev. Lett. V. 58, n. 15, 1499-1501 (1987)
  4. K. Wang, L. Zeng, and Ch. Yin, Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement, Opt. Commun. 216, 99-103 (2003).
  5. Jian-yu Lu and J. F. Greenleaf, Diffraction-limited beams and their applications for ultrasonic imaging and tissue characterization, Proc. SPIE, vol. 1733, pp. 92-119 (1992).
  6. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Stein-mann, and T. Lasser, Extended focus depth for Fourier domain optical coherence microscopy, Opt. Lett., Vol. 31, No. 16, 2450-2452 (2006).
  7. Kye-Sung Lee and Jannick P. Rolland, Bessel beam spectral-domain high-resolution optical coherence to-mography with micro-optic axicon providing extended focusing range, Opt. Lett., Vol. 33, No. 15, 1696-1698 (2008).
  8. Jian-yu Lu, J. F. Greenleaf, “Producing deep depth of field and depth-independent resolution in NDE with limited diffraction beams,” Ultrason. Imag., vol. 15, no. 2, pp. 134-149 (1993).
  9. José J. Lunazzi, Daniel S. F. Magalhães, Photographing by means of a diffractive axicon, XXIX ENFMC - Annals of Optics, pp. 1-4 (2006).
  10. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, Imaging properties of axicon in a scanning optical system, Appl. Opt. 31 (31) 6653-6657 (1992).
  11. Mathieu Fortin, Michel Piché and Ermanno F. Borra, Optical tests with Bessel beam interferometry, Optics Express  Vol. 12, No. 24, 5887-5895 (2004)
  12. Stephan Reichelt, Hans Tiziani, and Hans Zappe, Self-calibration of wavefront testing interferometers by use of diffractive elements, Proc. of SPIE, vol. 6292, pp. 629205.1-629205.10 (2006)
  13. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam, Nature, v. 419, 145-147 (2002)
  14. Martin Hegner, The light fantastic, Nature, v. 419, 125-126 (2002)
  15. J. Arlt, T. Hitomi, and K. Dholakia, Atom guiding along Laguerre-Gaussian and Bessel light beams. Appl. Phys. B v. 71, 549–554 (2000)
  16. Jochen Arlt and Kishan Dholakia, Josh Soneson and Ewan M. Wright, Optical dipole traps and atomic waveguides based on Bessel light beams, Physical Review A, v 63, 063602-1 - 063602-8 (2001)
  17. X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Ste-venson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, Femtosecond cellular transfection using a non-diffracting light beam, Applied Physics Letters, v. 91, 053902-1 - 053902-3 (2007)
  18. T. Cizmar, V. Kollarov, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, Generation of multiple Bessel beams for a biophotonics workstation, Optics Express, Vol. 16, No. 18, 14024-14035 (2008)
  19. J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A, v. 4, n.4,  651–654 (1987)
  20. McLeod J.H., The axicon: a new type of optical element, J. Opt. Soc. Am. 44, 592–597 (1954).
  21. R. M. Herman and T. A. Wiggins, Production and uses of diffractionless beams, J. Opt. Soc. Am. A 8(6), 932-942 (1991)
  22. N. Davidson, A. A. Friesem, and E. Hasman, Holographic axilens: high resolution and long focal depth, Opt. Lett. 16(7), 523-525 (1991)
  23. Jie Lin, Jianlong Liu, Jiasheng Ye, and Shutian Liu, Design of microlenses with long focal depth based on the general focal length function, J. Opt. Soc. Am. A 24(6), 1747-1751 (2007).
  24. V. P. Koronkevich, I. A. Mikhaltsova, E. G. Churin, and Yu. I. Yurlov, Lensacon, Аppl. Opt. 34(25), 5761-5772 (1993)
  25. Christian Parigger, Y. Tang, D. H. Plemmons, and J. W. L. Lewis, Spherical aberration effects in lens–axicon doublets: theoretical study, Аppl. Opt. 36(31), 8214-8221 (1997)
  26. A. Burvall, Axicon imaging by scalar diffraction theory, PhD thesis, Stockholm, 2004
  27. Carlos Lopez-Mariscal, Julio C. Gutierrez-Vega, and Sa-bino Chavez-Cerda, Production of high-order Bessel beams with a Mach–Zehnder interferometer, Applied Op-tics, Vol. 43, No. 26, 5060-5063 (2004)
  28. Raúl I. Hernández-Aranda, Sabino Chávez-Cerda, Julio C. Gutiérrez-Vega, Theory of the unstable Bessel resonator, J. Opt. Soc. Am. A Vol. 22, No. 9, 1909-1917 (2005)
  29. Jacek Sochacki, Zbigniew Jaroszewicz, Leszek Rafal Staroiski, Andrzej Kolodziejczyk, Annular-aperture logarithmic axicon, J. Opt. Soc. Am. A 10(8), 1765-1768 (1993).
  30. G. Mikula, Z. Jaroszewicz, A. Kolodziejczyk, K.Petelczyc, and M. Sypek, Imaging with extended focal depth by means of lenses with radial and angular modulation, Opt. Express. 15(15) 9184-9193 (2007)
  31. Kotlyar V.V., Soifer V.A., Khonina S.N., Diffractive design of focusators forming axial line, JETP Letters, 17 (24), 63-66 (1991) – [in Russian].
  32. Kotlyar V.V., Khonina S.N., Soifer V.A. Calculation of the focusators into a longitudinal linesegment and study of a focal area,  J. Modern Optics, 40(5), 761-769 (1993)
  33. J. Turunen, A. Vasara, and A. T. Friberg, Holographic generation of diffraction-free beams, J. Appl. Opt. 27(19), 3959-3962 (1988);
  34. S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, The phase rotor filter, J. Mod. Opt. 39, 1147–1154 (1992).
  35. Narupon Chattrapiban, Elizabeth A. Rogers, David Cofield, Wendell T. Hill, III, Rajarshi Roy, Generation of nondiffracting Bessel beams by use of a spatial light modulator, Opt. Lett. 28(22), 2183- 2185 (2003)
  36. S.N. Khonina, S.A. Balalayev, The comparative analysis of the intensity distributions formed by diffractive axicon and diffractive logarithmic axicon, Computer Optics, 33(2), 162-174 (2009) – [in Russian].
  37. S.A. Balalayev, S.N. Khonina, R.V. Skidanov, Examination of  possibility to form hypergeometric laser beams by means of diffractive optics, Izvest. SNC RAS, 10(3), 694-706 (2008) – [in Russian].
  38. Friberg A. T., Stationary-phase analysis of generalized axicons J. Opt. Soc. Am. A 13(4) 743–750 (1996)
  39. J. W. Goodman, Introduction to Fourier optics. МcGraw-Hill Book Company, 1968. 364 p. – [in Russian].
  40. S. N. Khonina, R.V. Skidanov, V. V. Kotlyar, V. A. Soifer. Rotating microobjects using a DOE-generated laser Bessel beam, Proceedings of SPIE, v.5456, 244-255, 2004.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846 2) 332-56-22, факс: +7 (846 2) 332-56-20