Investigation of axicon application in high-aperture focusing system
S.N. Khonina
, S.G. Volotovsky

Image Processing Systems Institute of the RAS,
Samara State Aerospace University

Full text of article: Russian language.

Abstract:
Axicon application in high-aperture focusing systems with various polarization to increase in extent and reduce transverse size of focal spot is considered. By comparison with narrow ring aperture, usually used for this purpose, addition of a lens with an axicon is energetically favorable. At reduction of the size of the central light spot on half-maximum intensity (FWHM) from 0,51 lambda to 0,36 lambda for radial polarization the advantage is proportional to the area of a blocked part of a lens. For linear polarization, which have the majority of lasers, the opportunity of formation the light spot narrowed in one direction up to 0,32 lambda is shown. Efficiency of vortical axicons application in solving a problem of formation axially extended but compact focal area for circular and azimuthal polarization is also shown.
As high-aperture lens is complemented by axicon (even “weak”) the focal area looks as a cone which tip has the smaller size than a focal spot of a separate lens. It is possible to vary extent and "acuteness" of a formed cone by axicon parameters. Furthermore, introduction of a vortical component allows to manage by the contribution of various vector field components in a cone’s tip that can be useful at interaction of electromagnetic radiation with the substances having selective sensitivity to a longitudinal or transverse component of a vector field.

Key words: diffractive linear axicon, lensacon, sharp focusing, size of a central light spot, depth of focus.

References:

  1. Khonina, S.N., Volotovsky, S.G., Fracxicon - diffractive optical element with conical focal domain // Computer Optics. - 2009. - Vol. 33, No 4. - P. 401-411 - (in Russian).
  2. Lensacon / V.P. Koronkevich, I.A. Mikhaltsova, E.G. Churin, Yu.I. Yurlov // Аppl. Opt. - 1993. - Vol. 34(25). - P. 5761-5772.
  3. Focusing light to a tighter spot / S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs // Opt. Commun. - 2000. - V. 179. - P. 1-7.
  4. Youngworth, K.S. Focusing of high numerical aperture cylindrical-vector beams / K.S. Youngworth and T.G. Brown // Opt. Express. - 2000. - V. 7. - P. 77-87.
  5. Dorn, R. Sharper focus for a radially polarized light beam, / R. Dorn, S. Quabis, and G. Leuchs // Phys. Rev. Lett. - 2003. - V. 91. - P. 233901.
  6. Kozawa, Y. Sharper focal spot formed by higher-order radially polarized laser beams / Y. Kozawa and S. Sato // Journal of Optical Society of America A. - 2007. - V. 24. - P. 1793.
  7. Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens / Lianzhou Rao, Jixiong Pu, Zhiyang Chen, Pu Yei // Optics & Laser Technology. - 2009. - V. 41. - P. 241-246.
  8. Kotlyar, V.V. Modeling sharp focus radially-polarized laser mode with conical and binary microaxicons / V.V. Kotlyar, S.S. Stafeev // Computer Optics. - 2009. - V. 33, N 1. - P. 52-60. - (in Russian).
  9. Kalosha, V.P., Golub, I. Toward the subdiffraction focusing limit of optical superresolution // Opt. Lett. - 2007. - Vol. 32. - P. 3540-3542.
  10. Davidson, N., Bokor, N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens // Opt. Lett. - 2004. - V. 29, 1318-1320.
  11. Tighter focusing with a parabolic mirror / J. Stadler, C. Stanciu, C. Stupperich, A. J. Meixner // Optics Letters. - 2008. - Vol. 33, No. 7. - P. 681-683.
  12. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications // Advances in Optics and Photonics. - 2009. - V. 1. - P. 1-57.
  13. Creation of a needle of longitudinally polarized light in vacuum using binary optics / Haifeng Wang, Luping Shi, Boris Lukyanchuk, Colin Sheppard, Chong Tow Chong // Nature Photonics. - 2008. - Vol. 2. - P. 501-505.
  14. Sick, B. Orientational imaging of single molecules by annular illumination / B. Sick, B. Hecht, L. Novotny // Phys. Rev. Lett. - 2000. - V. 85. - P. 4482-4485.
  15. Novotny, L. Longitudinal field modes probed by single molecules / L. Novotny, M.R. Beversluis, K.S. Youngworth, and T.G. Brown // Phys. Rev. Lett. - 2001. - V. 86. - P. 5251-5254.
  16. Zhan, Q. Focus shaping using cylindrical vector beams / Qiwen Zhan and James R. Leger // Opt. Express. - 2002. - V. 10(7). - P. 324-331.
  17. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam / H. Kawauchi, K. Yonezawa, Y. Kozawa and S. Sato // Optics Letters. - 2007. - V. 32. - P. 1839.
  18. Romea, R.D. Modeling of inverse Cherenkov laser acceleration with axicon laser beam focusing. / R.D. Romea and W.D. Kimura // Physical Review D. - 1990. - V. 42, N. 5. - P. 1807.
  19. Electron acceleration to GeV energy by a radially polarized laser / Devki Nandan Gupta, Niti Kant, Dong Eon Kim, Hyyong Suk // Physics Letters A. - 2007. - V. 368. - P. 402-407.
  20. Beversluis, M.R., Novotny, L., Stranick, S.J. Programmable vector point-spread function engineering // Opt. Express. - 2006. - V. 14. - P. 2650-2656.
  21. Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures / Yaniv Yirmiyahu, Avi Niv, Gabriel Biener, Vladimir Kleiner, and Erez Hasman // Opt. Express. - 2007. - V. 15(20). - P. 13404-13414.
  22. Xie, X.S., Dunn, R.C. Probing single molecule dynamics // Science. - 1994. - Vol. 265. - P. 361-364.
  23. Trochoson / S.N. Khonina, V.V. Kotlyar, V.A. Soifer, M.V. Shinkaryev, G.V. Uspleniev // Optics Communications. - 1992. - V. 91 (3-4). - P. 158-162.
  24. Rotation of microparticles with Bessel beams generated by diffractive elements / S.N. Khonina, V.V. Kotlyar, R.V. Ski­danov, V.A. Soifer, Jefimovs K., Simonen J., Turunen J. // Journal of Modern optics$ -2004. -51(14). -2167-2184.
  25. Zhan Q. Properties of circularly polarized vortex beams, Opt. Lett: -2006. -Vol. 31, -No.7, -P.867-869.
  26. Khonina S.N., Volotovsky S.G., Possibility analysis of subwavelength light localization and focus extending for high-aperture focusing system using vortical phase trans-mission function (принято к публикации в журнале «Электромагнитные волны и электронные системы», -2010. -№6. - (in Russian).
  27. Grosjean, T., Courjon, D. Photopolymers as vectorial sensors of the electric ?eld // Opt. Express. - 2006. - Vol. 14, No. 6. - P. 2203-2210.
  28. Goodman, J.W. Introduction to Fourier Optics. - New York, McGraw-Hill Book Company, Inc., 1968. - 441 p.
  29. Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory // J. Opt. Soc. Am. A. - 1987. - V. 4, N. 4. - P. 651-654
  30. McLeod, J.H. The axicon: a new type of optical element // J. Opt. Soc. Am. - 1954. - V. 44. - P. 592-597.
  31. Fedotovsky, A., Lehovec, H. Optical filter design for annular imaging // Appl. Opt. - 1974. - Vol. 13(12). - P. 2919-2923.
  32. Richards, B., Wolf, E. Electromagnetic diffraction in optical systems II. Structure of the image ?eld in an aplanatic system // Proc. Royal Soc. A. - 1959. - V. 253. - P. 358-379.
  33. Helseth, L.E. Optical vortices in focal regions // Opt. Commun. - 2004. - V. 229. - P. 85-91.
  34. High focal depth with a pure-phase apodizer / Haifeng Wang and Fuxi Gan // Applied Optics. - 2001. - Vol. 40, No. 31. - P. 5658-5662.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846 2) 332-56-22, факс: +7 (846 2) 332-56-20