Correction of shadow artifacts on colorful digital images
S.Al. Bibikov, A.V. Nikonorov, V.Al. Fursov

Image Processing Systems Institute of the RAS,
Samara State Aerospace University

Full text of article: Russian language.

Abstract:
This paper proposes information technology of shadow artifacts removing on colorful digital images of paintings. Shadow artifacts are caused by difference of picture lighting. Shadow edge detection and color correction problems are solved. Results of real images enhancement are presented.

Key words: image enhancement (processing), shadow distortion, color correction, identification.

References:

  1. Cheng, L. Removing shadows from color images / L. Cheng // PhD Thesis – Simon Fraser University, 2006. – 155 p.
  2. Weiss, Y. Deriving intrinsic images from image sequenses / Y. Weiss // ICCV01 – IEEE, 2001. – V.II – P. 68-75.
  3. McCamy, C.S. A color-rendition chart / C.S. McCamy, H. Marcus, J.G. Davidson // J. App. Photog. in Eng. – 1976. – V.2 – P. 95-99.
  4. Gevers, T. Color-based object recognition / T. Gevers, A.W.M. Smeulders // Patt.Rec. – 1999. – V.32 – P. 453-464.
  5. Gavrilov, A.V. Parallel algorithm of data selection using relative conforming estimate criterion / A. V. Gavrilov, V. A. Fursov // Proc. of The 12th ISPE International Conference on Concurrent Engineering: Research and Applications, Ft. Worth/Dallas, USA, 25 - 29 July, 2005. –2005. – P. 375-380.
  6. Nikonorov, A. Conformity estimation in color lookup tables preprocessing problem / A Nikonorov, V. Fursov // Proc. of 7th International Conference on Pattern Recognition and Image Analisis: New Information Technologis, St.Peterburg, 2004, 18-23 October, Russian Federation. – 2004. – V.I. – P. 213-216.
  7. Nikonorov, A. Constructing the conforming estimates of non linear parameters / A. Nikonorov, V. Fursov // Proc. of The 4th European Congress on Computational Methods in Applied Sciences and Engineering, 24-28, July, 2004, Jyvaskyla, Finland. – 2004. – P. 404-429.
  8. Judd, D. Color in business, science, and industry / Dean Judd, Gunter Wyszecki. – New York: Wiley, 1975. – 553 p.
  9. Murashev, D.M. Automated cytological specimen image segmentation technique based on the active contour model / D.M. Murashev // Proc. of Moscow Institute of Physics and Technology (State University). – Moscow, 2009. – V.1, - N.1. -P. 80-89. – (in Russian).
  10. Kass, M. Snakes: Active contour models / M. Kass, A. Witkin, D. Terzopoulos // Int. J. Computer vision. – N.1. – 1987. – P. 321-331.
  11. Computer Image Processing / Ed. V.A. Soifer – Lightning Source Inc, 2009. – 296 p.
  12. Bibikov, S.A. Color correction based on models identification using test image patches / S.A. Bibikov, V.A. Fursov // Computer optics. – Samara-Moscow, 2008. – Т.32, №3. – P. 302-307. – (in Russian).

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846 2) 332-56-22, факс: +7 (846 2) 332-56-20