Algorithm for generation of 3d face model by a photograph
A.V. Shlyannikov

Kazan State University

Full text of article: Russian language.

Abstract:
The paper suggests a method for generating a 3D face model by a single input image. Algorithm is based on extracting the control points and characteristics features from input image and applying them to a model. A special wavelet transform is used to extract the most informative features from face photograph. Generated model can be used in face recognition systems or for visualization.

Key words:
face recognition, 3D face models, wavelet processing.

References:

  1. Kakadiaris, I., Three-Dimensional Face Recognition in the Presence of Facial Expressions:An Annotated Deformable Model Approach. / I. Kakadiaris, G. Passalis, G. Toderici, M. Murtuza, Yu. Lu, N. Karampatziakis, T. Theoharis // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2007. – Vol. 29, N 4. – P. 640-649. – ISSN 0162-8828.
  2. Stolov Y.L., Shlyannikov A.V.  Face recognition on photograph by characteristic region analysis // Scientific Letters of Kazan State University. –  2007. – Т. 149, № 2. – С. 138-145. – ISSN 1815-6088. – (In Russian).
  3. Milborrow, S., Nicolls, F., Locating Facial Features with an Extended Active Shape Model // Lecture Notes in Computer Science. – 2008. – Vol. 5305. – P. 504-513. – ISSN 1611-3349.
  4. Stolov Y.L. Parallel algorithm for locating watermarks on image // Letters of Kazan State Technical University. – 2006. – № 3. – С. 37-42. – (In Russian).
  5. J. Yang, D. Zhang, A. F. Frangi, and J.Y. Yang. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition // IEEE Trans pattern analysis and machine intelligence. – 2004. – Vol. 26, N 1. – P. 131-137. – ISSN: 0162-8828.
  6. J.K. Sing, D.K. Basu, M. Nasipuri, M. Kundu. Face recognition using point symmetry distance-based RBF network // Applied Soft Computing. – 2007. – Vol. 7. – P. 58-70. – ISSN: 1568-4946.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846 2) 332-56-22, факс: +7 (846 2) 332-56-20