The analysis of spatial pattern formation
in reaction-diffusion system near bifurcation
S.E. Kurushina
S. P. Korolyov Samara State Aerospace University
Full text of article: Russian language.
Abstract:
Generalized two-component of reaction-diffusion system in external fluctuated environment is considered. Ginzburg-Landau equations under condition of soft mode instability are proposed. The properties of this model in neighborhood of Turing bifurcation point were analyzed. Numerical investigation of specific reaction-diffusion systems was conducted. Agreement of the analytical and numerical results is shown.
Key words:
reaction-diffusion system, multiplicative fluctuations of parameters, spatial pattern, unstable modes, Ginzburg-Landau equation, noise-induced parametrical excitation, simulation.
References:
- Bray, Mark-Anthony. Experimental and Theoretical Analysis of Phase Singularity Dynamics in Cardiac Tissue / Bray Mark-Anthony, Shien-Fong Lin, Rubin R. Aliev, Bradley J. Roth, John P. Wikswo // Journal of cardiovascular electrophysiology. – 2001. – Vol. 12, ¹ 6. – P. 716-722.
- Castets, V. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern / V. Castets, E. Dulos, J. Boissonade, P. De Kepper // Phys. Rev. Lett. – 1990. – Vol. 64. – P. 2953-2956.
- Efimov, I.R. Dynamics of Rotating Vortices in the Beeler-Reuter Model of Cardiac Tissue / I.R. Efimov, V.I. Krinsky, J. Jalife // Chaos, Solitons & Fractals. – 1995. – Vol. 5. – ¹ 3/4. – P. 513-526.
- Meinhardt, H. Applications of a theory of biological pattern formation based on lateral inhibition / H. Meinhardt, A. Gierer // Journ. Cell. Sci. – 1974. – Vol. 15. – P. 321.
- Meinhardt, H. The Algorithmic Beauty of Sea Shells – Berlin, Heidelberg, New York. Springer-Verlag, 1999. – 280 p.
- Sun, G.-Q. Dynamical complexity of a spatial predator–prey model with migration / Gui-Quan Sun, Zhen Jin, Quan-Xing Liu, Li Li // Ecological modeling. – 2008. – Vol. 219. – P. 248-255.
- Murray, J.D. Mathematical Biology – Berlin Heidelberg: Springer-Verlag, 2002. – 576 p.
- Malchow, H. Spatiotemporal patterns in an excitable plankton system with lysogenic viral infection / H. Malchow, F.M. Hilker, R.R. Sarkar, K. Brauer // Mathematical and Computer Modeling. – 2005. – Vol. 42. – P. 1035-1048.
- Romanovsky, Yu.M. Mathematical modeling in biophysics (The introduction in theoretical biophysics) / Yu.Ì. Romanovsky, N.V. Stepanova, D.S. Chernavcky – Moscow-Izhevsk: ICI, 2004. – 472 p. – (In Russian).
- Scheffer, M. Fish and nutrients interplay determines algal biomass: a minimal model // OIKOS. – 1991. – Vol. 62. – P. 271-282.
- Malchow, H. Motional instabilities in prey-predator systems / H. Malchow // J. Theor. Biol. – 2000. – Vol. 204. – P. 639-647.
- Klyatskin, V.I. Stochastic equations through the eye of the physicist – Ìoscow: “Fizmatlit” Publisher, 2001. – 528 p. – (In Russian).
- Haken, H. Synergetics – Ìoscow: “Mir” Publisher, 1980. – 406 p. – (In Russian).
- Horsthemke, W. Noise-induced Transitions: theory and application in physics, chemistry, and biology / W. Horsthemke, R. Lefevr – Ìoscow: “Mir” Publisher, 1987. – 400 p. – (In Russian).
- Kurushina, S.E. Dissipative structures of reaction-diffusion system simulation in multiplicative fluctuation phone / S.Å. Kurushina, À.À. Ivanov // Izvestiya VUZ. Allied nonlinear dynamics. – 2010. – ¹ 3. – P. 85-103. – (In Russian).
- Kurushina, S.E. Spatiotemporal pattern of prey-predator system simulation in external fluctuate environment / S.Å. Kurushina, Yu.V. Zhelnov, I.P. Zavershinsky, À.À. Ivanov, V.V. Maximov // Matematicheskoe Modelirovanie. –2010. – Vol. 22, N 10. – P. 3-17. – (In Russian).
- Stratonovich, R.L. Nonlinear nonequilibrium thermodynamics – Ì.: “Nauka” Publisher, 1985. – 480 p.
© 2009, ÈÑÎÈ ÐÀÍ
Ðîññèÿ, 443001, Ñàìàðà, óë. Ìîëîäîãâàðäåéñêàÿ, 151; ýëåêòðîííàÿ ïî÷òà: ko@smr.ru ; òåë: +7 (846 2) 332-56-22, ôàêñ: +7 (846 2) 332-56-20