Diffraction of the gaussian beam by the logarithmical axicon: overcoming the diffraction limit
V.V. Kotlyar, A.A. Kovalev, S.S. Stafeev

Image Processing Systems Institute, Russian Academy of Sciences,

Samara State Aerospace University

Full text of article: Russian language.

Abstract:
We have obtained explicit analytical expressions for complex amplitude of light, describing Fresnel diffraction of the Gaussian beam by a logarithmical axicon (LA). Also, equation has been obtained for on-axis intensity of the Gaussian beam diffracted by LA. Estimating equation for effective radius of the beam has been derived. This equation shows inverse relation between the beam radius and “strength” parameter of the axicon. By FDTD simulation we show that LA can be used to overcome the diffraction limit: near the LA full with of the beam at half-maximum of intensity can be fifth part of the free space wavelength.

Key words:
logarithmical axicon, diffraction limit, Gaussian beam, Fresnel diffraction, axial intensity.

References:

  1. Bhuyan, M.K. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams / M.K. Bhu­yan, F. Courvoisier, P.A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, J.M. Dudley // Appl. Phys. Lett. – 2010. – Vol. 97. – P. 081102.
  2. Fu, J. Subwavelength focusing of light by a tapered microtube / J. Fu, H. Dong, W. Fang // Appl. Phys. Lett. – 2010. – Vol. 97. – P. 041114.
  3. Golub, I. Characterization of a refractive logarithmic axicon / I. Golub, B. Chebi, D. Shaw, D. Nowacki // Opt. Lett. – 2010. – Vol. 35, No. 16. – P. 2828-2830.
  4. Kotlyar, V.V. Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon / V.V. Kotlyar, S.S. Stafeev // J. Opt. Soc. Am. B. – 2010. – Vol. 27, No. 10. – P. 1991-1997.
  5. Lit, J.W. Focal depth of a transmitting axicon / J.W. Lit, R. Tremblay // J. Opt. Soc. Am. – 1973. – Vol. 63, No. 4. – P. 445-449.
  6. Golub, M.A. Focusing light into a specified volume by computer-synthesized hologram / M.A. Golub, S.V. Karpeev, A.M. Prokhorov, I.N. Sisakyan, V.A. Soifer // Sov. Tech. Phys. Lett. – 1981. – Vol. 7. – P. 264-266.
  7. Staronski, L.R. Lateral distribution and flow of energy in uniform-intensity axicon / L.R. Staronski, J. Sochacki, Z. Jroszewicz, A. Kolodziejcziwz // J. Opt. Soc. Am. A. – 1992. – Vol. 9, No. 11. – P. 2091-2094.
  8. Khonina, S.N. Hypergeometrical beams in a near zone of diffraction within the limits of scalar model / S.N. Khonina, S.A. Balalaev // Computer Optics. – 2009. – Vol. 33, No. 4. – P. 427-435. – (in Russian).
  9. Handbook of Mathematical Functions / edited by M. Ab­ramowitz, I.A. Stegun – National Bureau of Standards, Washington, DC, 1964.– 1044 p.
  10. Kovalev, A.A. Hypergeometric laser beams of general form and partial cases / A.A. Kovalev, V.V. Kotlyar // Computer Optics. – 2007. – Vol. 31, No. 4. – P. 29-32. – (in Russian).
  11. Kotlyar, V.V. Family of hypergeometric laser beams / V.V. Kotlyar, A.A. Kovalev // J. Opt. Soc. Am. A. – 2008. – Vol. 25. – P. 262-270.
  12. Kotlyar, V.V. Sharply focusing a radially polarized laser beam using a gradient Mikaelian’s microlens / V.V. Kotlyar, S.S. Stafeev // Opt. Commun. –2009. – Vol. 282, No. 4. – P. 459-464.
  13. www.rsoftdesing.com.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20