Formation of an axial line with the reduced cross-section size for linear polarization of an illuminating beam by means of high-aperture binary axicons without axial symmetry
S.N. Khonina

Image Processing Systems Institute, Russian Academy of Sciences,

Samara State Aerospace University

Full text of article: Russian language.

Abstract:
Using plane wave expansion method in Mansuripur modification with Fresnel transmission coefficients the opportunity of axial light string formation with the reduced cross-section size for linear polarization of an illuminating beam is shown for high-aperture binary axicons without axial symmetry. It is shown, that widening of the central light spot which inevitably arises at linear polarization of an illuminating beam in high-aperture systems can be compensated due to breaking of axial symmetry of an axicon. For this purpose the asymmetry allowing to redistribute the axial contribution various a component of an electric vector is used so that a longitudinal component had on an optical axis maximal value, and cross-section component – minimal. Various types of axicons are considered allowing to reach this purpose.

Key words:
diffractive axicon, high-aperture optical element, linear polarization, full width of a light spot at half of maximum, asymmetric binary axicon, the superresolution.

References:

  1. Kalosha, V.P. Toward the subdiffraction focusing limit of optical superresolution / V.P. Kalosha and I. Golub // Opt. Lett. - 2007. - V. 32. - P. 3540-3542.
  2. Khonina, S.N. Fracxicon – diffractive optical element with conical focal domain / S.N. Khonina, S.G. Volotovsky // Computer Optics. – 2009. – Vol. 33, No 4. – P. 401-411 – (in Russian).
  3. Helseth, L.E. Roles of polarization, phase and amplitude in solid immersion lens system / L.E. Helseth // Opt. Commun. – 2001. – V. 191. – P. 161-172
  4. Grosjean, T. Conical optics: the solution to con?ne light / T. Grosjean, F. Baida, and D. Courjon // APPLIED OPTICS. - 2007. - Vol. 46, No. 11. - P. 1994-2000.
  5. Kotlyar, V.V. Modeling sharp focus radially-polarized laser mode with conical and binary microaxicons / V.V. Kotlyar, S.S. Stafeev // Computer Optics. – 2009. – V. 33, N 1. – P. 52-60. – (in Russian).
  6. Khonina, S.N. Fast calculation algorithms for diffraction of radially-vortical laser fields on the microaperture / S.N. Khoni­na, A.V. Ustinov, S.G. Volotovsky, M.A. Ana­nin // Izvest. SNC RAS – 2010. – V. 12(3). – P. 15-25. – (in Russian).
  7. Grosjean, T. Photopolymers as vectorial sensors of the electric ?eld / T. Grosjean, D. Courjon // Opt. Express. - 2006. - Vol. 14, No. 6. - P. 2203-2210.
  8. Khonina, S.N. Control by contribution of components of vector electric field in focus of a high-aperture lens by means of binary phase structures / S.N. Khonina, S.G. Volotovsky // Computer Optics. – 2010. – Vol. 34, No. 1. – P. 58-68. – (in Russian).
  9. Khonina, S.N. Calculation of diffraction of the linearly-polarized limited beam with uniform intensity on high-aperture binary micro-axicons in a near zone / S.N. Kho­nina, A.V. Ustinov, S.G. Volotovsky, A.A. Kovalev // Computer Optics. - 2010. - Vol. 34, No. 4. - P. 433-460. – (in Russian).
  10. Mansuripur, M. Certain computational  aspects of vector diffraction problems / M. Mansuripur // J. Opt. Soc. Am. A. - 1989. - Vol. 6, No. 5. - P. 786-805.
  11. Zhang, Y. Vector propagation of radially polarized Gaussian beams diffracted by an axicon / Y. Zhang, L. Wang, C. Zheng // J. Opt. Soc. Am. A. - 2005. - Vol. 22, No. 11. - P. 2542-2546.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20