Simple technique of generation inhomogeneously polarized laser beams by means of does
S.V. Karpeev, S.N. Khonina

Image Processing Systems Institute, Russian Academy of Sciences,

Samara State Aerospace University

Full text of article: Russian language.

Abstract:
Simple updating developed before optical system for generation of the inhomogeneously polarized laser beams, based on application of DOEs with carrier frequency, is offered. Reduction of sizes and weights of optical system, decrease in losses of light energy, and also reduction of number ar-ranged parameters and simplification of adjustmentis reached due to exception of lenses in the op-tical scheme. Advantages of the previous version of system, namely universality and simplicity of reorganization for different types of polarization are completely kept. The executed experiments have shown improvement of beam formation quality.

Key words:
inhomogeneously polarized beams, radial and azimutal polarization, coherent superposition, diffractive optical elements, carrier frequency.

References:

  1. Zhan, Qiwen Cylindrical vector beams: from mathematical concepts to applications // Advances in Optics and Photonics. – 2009. – 1. – P.1–57.
  2. Focusing light to a tighter spot / S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs // Opt. Commun. – 2000. – V.179. – P.1–7.
  3. K.S. Youngworth and T.G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
  4. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
  5. Y. Kozawa and S. Sato, Sharper focal spot formed by higher-order radially polarized laser beams, Journal of Optical Society of America A, 24, 1793 (2007).
  6. Lianzhou Rao, Jixiong Pu, Zhiyang Chen, Pu Yei, Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens, Optics & Laser Technology 41 (2009) 241–246.
  7. V.V. Kotlyar, S.S. Stafeev, Modeling sharp focus radially-polarized laser mode with conical and binary microaxicons, Computer Optics 33(1) 52-60 (2009). – (in Russian).
  8. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett., 85, 4482–4485 (2000).
  9. L. Novotny, M.R. Beversluis, K.S. Youngworth, and T.G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett., 86, 5251–5254 (2001).
  10. Qiwen Zhan and James R. Leger, Focus shaping using cylindrical vector beams, Opt. Express 10(7) 324-331 (2002).
  11. H. Kawauchi, K. Yonezawa, Y. Kozawa and S. Sato, Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam, Optics Letters, 32, 1839 (2007).
  12. Romea R.D. and Kimura W.D. Modeling of inverse Cherenkov laser acceleration with axicon laser beam focusing. Physical Review D, 1990, v.42, n.5, p.1807.
  13. Devki Nandan Gupta, Niti Kant, Dong Eon Kim, Hyyong Suk, Electron acceleration to GeV energy by a radially polarized laser, Physics Letters A 368 (2007) 402–407.
  14. V.G. Niziev, A.V. Nesterov Influence of Beam Polarization on Laser Cutting Efficiency Journal of Physics D Appl. Phys. V.32, (1999), p. 1455-1461.
  15. Krishnan Venkatakrishnan and Bo Tan, Interconnect microvia drilling with a radially polarized laser beam, J. Micromech. Microeng. 16 (2006) 2603–2607.
  16. Yaniv Yirmiyahu, Avi Niv, Gabriel Biener, Vladimir Kleiner, and Erez Hasman, Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures, Opt. Express 15(20) 13404-13414 (2007).
  17. Yuichi Kozawa and Shunichi Sato, Generation of a radially polarized laser beam by use of a conical Brewster prism, Opt. Lett. 30(22) 3063-3065 (2005).
  18. Hikaru Kawauchi, Yuichi Kozawa, Shunichi Sato, Takashi Sato, and Shojiro Kawakami, Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate, Opt. Lett. 33(4) 399-401 (2008).
  19. V.G. Niziev, V.P. Yakunin, N.G. Turkin, Generation of nonuniform polarized modes in the powerful CO2-laser, Quantum Electronics, 39(6) 505-514 (2009). – (in Russian).
  20. Ze’ev Bomzon, Gabriel Biener, Vladimir Kleiner, and Erez Hasman, Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings, Opt. Lett. 27(5) 285-287 (2002).
  21. K. Yonezawa, Y. Kozawa, and S. Sato, Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal, Opt. Lett. 31(14) 2151-2153 (2006).
  22. K. Yonezawa, Y. Kozawa, and S. Sato, Compact Laser with Radial Polarization Using Birefringent Laser Medium, Jpn. J. Appl. Phys. 46(8A) 5160–5163 (2007).
  23. Yuichi Kozawa, Shunichi Sato, Takashi Sato, Yoshihiko Inoue, Yasuo Ohtera, and Shojiro Kawakami, Cylindrical Vector Laser Beam Generated by the Use of a Photonic Crystal Mirror, Applied Physics Express 1, 022008 (2008).
  24. S.C. Tidwell, D.H. Ford, and W.D. Kimura, “Generating radially polarized beams interferometrically,” Applied Optics, 29, 2234–2239 (1990).
  25. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express, 7, 77–87, (2000).
  26. Nicolas Passilly, Renaud de Saint Denis, and Kamel Aït-Ameur, François Treussart, Rolland Hierle, and Jean-François Roch, Simple interferometric technique for generation of a radially polarized light beam, J. Opt. Soc. Am. A 22(5) 984-991 (2005).
  27. D.P. Biss, K.S. Youngworth, and T.G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt., 45, 470–479 (2006).
  28. G. Volpe, D. Petrov, Generation of cylindrical vector beams with few-mode ?bers excited by Laguerre–Gaussian beams, Opt. Comm. 237, 89–95 (2004).
  29. Toru Hirayama, Yuichi Kozawa, Takahiro Nakamura and Shunichi Sato, Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tenability, Opt. Express, 14(26) 12839-12845 (2006).
  30. J.A. Davis, D.E. McNamara, D.M. Cottrell and T. Sonehara, “Two dimensional polarization encoding with a phase only liquid-crystal spatial light modulator,” Appl. Opt., 39, 1549–15541 (2000).
  31. Mark A.A. Neil, Farnaz Massoumian, Rimvydas Ju?skaitis and Tony Wilson, Method for the generation of arbitrary complex vector wave fronts, Opt. Lett. 27(21) 1929-1931 (2002).
  32. C. Kohler, T. Haist, X. Schwab and W. Osten, Hologram optimization for SLM-based reconstruction with regard to polarization effects, Opt. Express 16(19) 14853-14861 (2008).
  33. Karpeev S.V., Khonina S.N., The optical scheme for universal generation and conversion of nonuniform polarized laser beams by means of DOEs, Computer Optics, 33(3), 261-267 (2009). – (in Russian)
  34. Khonina S.N., Karpeev S.V., Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams, Applied Optics, 49(10), 1734-1738 (2010)
  35. S.N. Khonina, V.V. Kotlyar, V.A. Soifer, Diffractive optical elements matched with Gauss-Laguerre modes, Computer Optics, 17, 25-31 (1997). – (in Russian).
  36. S.N. Khonina, Formation of Gauss-Hermite modes by means of binary DOEs. II. Optimisation of aperture function, Computer Optics, 18, 28-36 (1998). – (in Russian).
  37. Khonina S.N., Kotlyar V.V., Skidanov R.V., Soifer V.A., Laakkonen P., Turunen J., Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element, Optics Communications, 175, 301-308 (2000)
  38. Friberg A.T., Stationary-phase analysis of generalized axicons J. Opt. Soc. Am. A 13(4) 743–750 (1996)
  39. Kotlyar V.V., Khonina S.N., Soifer V.A., Method of partial coding for calculation of phase formers of Gauss-Hermite modes, Avtometria, 6, 74-83 (1999). – (in Rusian).
  40. Khonina S.N., Balalayev S.A., Skidanov R.V., Kotlyar V.V., Paivanranta B., Turunen J., Encoded binary diffractive element to form hyper-geometric laser beams, J. Opt. A: Pure Appl. Opt. 11 (2009) 065702 (7pp)
  41. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5 (10), 1550–1567 (1966).

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20