Analysis of wave aberration influence on reducing focal spot size in a high-aperture focusing system
S.N. Khonina, A.V. Ustinov, E. A. Pelevina

Full text of article: Russian language.

Abstract:
It was shown that the addition of transmittance functions corresponding to the wave aberrations in the form of Zernike functions to the high-numerical-aperture focusing systems results in narrowing of the transverse dimension of focal spot below the diffraction limit. Moreover, for linear polarization, the most common for modern lasers, the results achieved along one direction are better than for the radial polarization, obtaining of which requires complex or expensive devices. Overcoming of the diffraction limit happens due to a substantial reduction of energy in the central part of the focal region. However, the possibility of registration of light fields that have a very low intensity provides perspectives of the received results. For linear polarization an elongated focal spot that has full width at half of maximum along the polarization axis FWHM(-)=0.24λ was obtained, for the radial polarization a round spot that has FWHM=0.35λ and also for the circular polarization with FWHM=0.35λ was obtained. For the azimuthal polarization the vortex phase function of the first order allows us to obtain the total intensity of the central circular spot of light narrower than the diffraction limit: FWHM=0.46λ with low intensity in the sidelobes. It was also shown that not only the size of light spot can be reduced, but also the shadow area, formed by a light ring with very small radius.

Key words:
Focal spot size, Zernike basis, high-aperture focusing system, aberration, overcoming of the diffraction limit.

References:

  1. Quabis, S. Focusing light to a tighter spot / S. Quabis // Opt. Commun. – 2000. – V. 179. – P. 1-7.
  2. Dorn, R. Sharper focus for a radially polarized light beam / R. Dorn // Phys. Rev. Lett. – 2003. – V. 91. – P. 233901.
  3. Sheppard, Colin J.R. Annular pupils, radial polarization, and superresolution / Colin J.R. Sheppard // Appl. Opt. – 2004. – V. 43(22). – P. 4322-4327.
  4. Khonina, S.N. Investigation on axicon application in high-aperture focusing system / S.N. Khonina, S.G. Volo­tovsky // Computer Optics. – 2010. – V. 34, N 1. – С. 35-51. – (In Russian).
  5. Khonina, S.N. Control by contribution of components of vector electric field in focus of a high-aperture lens by means of binary phase structures / S.N. Khonina, S.G. Volotovsky // Computer Optics. – 2010. – V. 34, N 1. – P. 58-68. – (In Russian).
  6. Visser, T.D. Spherical aberration and the electromagnetic field in high-aperture systems / T.D. Visser, S.H. Wiersma // J. Opt. Soc. Am. A. – 1991. – V. 8, N 9. – P. 1404-1410.
  7. Visser, T.D. Diffraction of converging electromagnetic waves / T.D. Visser, S.H. Wiersma // J. Opt. Soc. Am. A. – 1992. – V. 9, N 11. – P. 2034-2047.
  8. Kant, R. An analytical solution of vector diffraction for focusing optical systems with Seidel aberrations / R. Kant // J. Mod. Opt. – 1993. – Vol. 40. – P. 2293-2311.
  9. Kant, R. Superresolution and increased depth of focus: an inverse problem of vector  diffraction / R. Kant // J. Mod. Opt. – 2000. – Vol. 47(5). – P. 905-916.
  10. Braat, J.J.M. Extended Nijboer–Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system / J.J.M. Braat, P. Dirksen, A.J.E.M. Janssen, S. van Haver, A.S. van de Nes // Opt. Soc. Am. A. – 2005. – V. 22, N 12. – P. 2635-2650.
  11. Braat, J.J.M. Energy and momentum flux in a high-nu­merical-aperture beam using the extended Nijboer-Zernike diffraction formalism / J.J.M. Braat, S. van Haver, A.J.E.M. Janssen, P. Dirksen // Journal of the European Optical Society. – 2007. – Rapid Publications 2, 07032. – P. 1-13.
  12. Biss, D.P. Primary aberrations in focused radially polarized vortex beams, / D.P. Biss and T.G. Brown // Opt. Express. – 2004. – Vol. 12. – P. 384-393.
  13. Rao, R. Field confinement with aberration correction for solid immersion lens based fluorescence correlation spectroscopy / R. Rao, J. Mitic, A. Serov, R.A. Leitgeb, T. Lasser // Optics Communications. – 2007. – Vol. 271. – P. 462-469.
  14. Singh, R.K. Effect of primary spherical aberration on high-numerical-aperture focusing of a Laguerre–Gaussian beam / R.K. Singh, P. Senthilkumaran, K. Singh // J. Opt. Soc. Am. A. – 2008. – V. 25, N 6. – P. 1307-1318.
  15. Singh, R.K. Tight focusing of vortex beams in presence of primary astigmatism / R.K. Singh, P. Senthilkumaran, K. Singh // J. Opt. Soc. Am. A. – 2009. – V. 26, N 3. – P. 576-588.
  16. Singh, R.K. Structure of a tightly focused vortex beam in the presence of primary coma / R.K. Singh, P. Senthil­kumaran, K. Singh // Optics Communications. – 2009. – Vol. 282. – P. 1501-1510.
  17. Born, M. Principlies of Optics / M. Born, E. Wolf. – Oxford: Pergamon Press, 1968.
  18. Khonina, S.N. Diffractive optical element matched with Zernike basis / S.N. Khonina, V.V. Kotlyar, Ya. Wang // Pattern Recognition and Image Analysis. – 2001. – Vol. 11(2). – P. 442–445.
  19. Sheppard, C.J.R. Orthogonal aberration functions for high-aperture optical systems / C.J.R. Sheppard // J. Opt. Soc. Am. A. – 2004. – Vol. 21, N 5. – P. 832-838.
  20. Richards, B. Electromagnetic diffraction in optical systems. II. Structure of the image ?eld in an aplanatic system / B. Richards and E. Wolf // Proc. R. Soc. London Ser. A. – 1959. – V. 253. – P. 358–379.
  21. Khonina, S.N. Possibility Analysis of Subwavelength Light Localization and Focus Extending for High-Aperture Focusing System Using Vortical Phase Transmission Function / S.N. Khonina, S.G. Volotovsky // Electromagnetic Waves and Elecronic Systems. – 2010. – N 11. – P. 6-25. – (In Russian).
  22. Prudnikov, A.P. Integrals and Series. Vol. 2. Special Functions / A.P. Prudnikov, Yu.A. Brychkov and O.I. Ma­richev. – New York: Gordon & Breach Sci. Publ., 1990.
  23. Grosjean, T. Photopolymers as vectorial sensors of the electric field / T. Grosjean and D. Courjon // Optics Express. – 2006. – Vol. 14, Issue 6. – P. 2203-2210.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20