Cloud computing for nanophotonics simulations
N.L. Kazanskiy , P.G. Serafimovich

Full text of article: Russian language.

Abstract:
Design and analysis of complex nanophotonic and nanoelectronic structures require significant computing resources. Cloud computing infrastructure allows distributed parallel applications to achieve greater scalability and fault tolerance. The problems of effective use of high-performance computing systems for modeling and simulation of subwavelength diffraction gratings are considered. Rigorous Coupled-Wave Analysis (RCWA) method is adapted to cloud computing environment. In order to accomplish this, data flow of the RCWA method is analyzed and CPU-intensive operations are converted to data-intensive operations. The generated data sets are structured in accordance with the requirements of MapReduce technology.

Key words:
cloud computing; subwavelength diffraction grating; optimization; Maxwell's equations, MapReduce.

References:

  1. Armbrust, M. A view of cloud computing / M. Armbrust [et al.] // Communications of the ACM. - 2010. - Vol. 53(4). - P. 50-58.
  2. Volotovskiy, S.G. Distributed software for parallel calculation of diffractive optical elements on web-server and cluster / S.G. Volotovskiy, N.L. Kazanskiy, P.G. Seraphimovich and S.I. Kharitonov. - Proc. IASTED, ACTA Press, 2002. - P. 69-73.
  3. Snir, M. MPI-The Complete Reference, Volume 1: The MPI Core / M. Snir, S. Otto, S. Huss-Lederman, D. Wal­ker, J. Dongarra // MIT Press Cambridge, MA, - 1998.
  4. Dean, J. MapReduce: a flexible data processing tool / J. Dean, S. Ghemawat // Communications of the ACM. - 2010. - Vol. 53, N 1. - P. 72-77.
  5. Golub, M.A. Computational experiment with plane optical elements / M.A. Golub, N.L. Kazanskii, I.N. Sisakyan, V.A. Soifer // Optoelectronics, Instrumentation and Data Processing. - 1988. - N 1. - P. 78-89. - (in Russian).
  6. Kazanskiy, N.L. Mathematical simulation of optical systems / N.L. Kazanskiy. - Samara: “SSAU” Publisher, 2005. - 240 p. - (in Russian).
  7. Kazanskiy, N.L. Harnessing the guided-mode resonance to design nanooptical transmission spectral filters / N.L. Kazanskiy, P.G. Serafimovich and S.N. Khonina // Optical Memory & Neural Networks (Information Optics). - 2010. - Vol. 19, N 4. - P. 318-324.
  8. Golovashkin, D.L. Solving Diffractive Optics Problem using Graphics Processing Units / D.L. Golovashkin and N.L. Kazanskiy // Optical Memory and Neural Networks (Information Optics). - 2011. - Vol. 20, N 2. - P. 85-89.
  9. Moharam, M.G. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach / M.G. Moharam, Drew A. Pommet and Eric B. Grann // J. Opt. Soc. Am. A. - 1995, May. - V. 12(5). - P. 1077-1086.
  10. Li, L. Use of Fourier series in the analysis of discontinuous periodic structures / Lifeng Li // J. Opt. Soc. Am. A. - 1996. - Vol. 13(9). - P. 1870-1876.
  11. Bezus, E.A. Evanescent-wave interferometric nanoscale photolithography using guided-mode resonant gratings / E.A. Bezus, L.L. Doskolovich and N.L. Kazanskiy // Microelectronic Engineering. - 2011. - Vol. 88, N 2. - P. 170-174.
  12. Bezus, E.A. Scattering suppression in plasmonic optics using a simple two-layer dielectric structure / E.A. Bezus, L.L. Doskolovich, and N.L. Kazanskiy // Applied Physics Letters. - 2011. - Vol. 98, N 22. - P. 221108-221111.
  13. Hadoop.apache.org / Tested 15.06.2011.
  14. Venner, J. Pro Hadoop / J. Venner // Springer, 2009.
  15. Voevodin, V.V. Mapping computational problems in computer architecture / V.V. Voevodin // Computational Methods and Programming: New Information Technologies. - 2000. - Vol. 1, N 2. - P. 37-44. - (in Russian).
  16. Popov, S.B. Modeling the task information structure in parallel image processing / S.B. Popov// Computer optics. - 2010. - Vol. 34, N 2. - P. 231-242. - (in Russian).
  17. Computer Image Processing, Part I: Basic concepts and theory / V.A. Soifer, editor. - VDM Verlag Dr. Muller e.K., 2009. - 283 p.
  18. Born, M. Principles of Optics / M. Born, E. Wolf. - Oxford: Pergamon, 1980.
  19. Soifer, V.A. Nanophotonics and diffractive optics / V.A. Soifer // Computer Optics. - 2008. - Vol. 32, N 2. - P. 110-118. - (in Russian).
  20. Soifer, V.A. Diffractive optical elements in nanophotonic devices / V.A. Soifer, V.V. Kotlyar, L.L. Doskolovich // Computer Optics. - 2009. - Vol. 33, N 4. - P. 352-368. - (in Russian).
  21. Kazanskiy, N.L. Using guided-mode resonance to design nano-optical spectral transmission filters / N.L. Kazanskiy, P.G. Serafimovich, S.B. Popov and S.N. Khonina // Computer Optics. - 2010. - Vol. 34, N 2. - P. 162-168. - (in Russian).
  22. Belotelov, V.I.Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems / V.I. Belotelov, L.L. Doskolovich, A.K. Zvezdin // Physical Review Letters. - 2007. - Vol. 98, N 7.
  23. Bykov, D.A. Extraordinary Magneto-Optical Effect of a Change in the Phase of Diffraction Orders in Dielectric Diffraction Gratings / D.A. Bykov, L.L. Doskolovich, V.A. Soifer, N.L. Kazanskiy // Journal of Experimental and Theoretical Physics. - 2010. - Vol. 111, N 6. - P. 967-974. - (in Russian).
  24. Bezus, E.A. The design of the diffractive optical elements to focus surface plasmons / E.A. Bezus, L.L. Doskolovich, N.L. Kazanskiy, V.A. Soifer, S.I. Kharitonov, M. Pizzi, P. Perlo // Computer Optics. - 2009. - Vol. 33, N 2. - P. 185-192. - (in Russian).
  25. Bezus, E.A. Design of diffractive lenses for focusing surface plasmons / E.A. Bezus, L.L. Doskolovich, N.L. Ka­zanskiy, V.A. Soifer and S.I. Kharitonov // Journal of Optics. - January 2010. - Vol. 12, N 1. - P. 015001-015008.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20