Binary lens: investigation of local focuses
S.N. Khonina, A.V. Ustinov, R.V. Skidanov

Full text of article: Russian language.

Abstract:
Within the limits of the scalar diffractive theory the analysis of the axial distribution formed by a binary lens (zone plate) is made. It is analytically shown, that for lenses with the low numerical aperture, some local focuses close to the main focus have the intensity close to intensity of the main focus due to proportional reduction of the transverse size of local focuses. In area close to an optical element where paraxial approach is not valid, the transverse size of focal spots ceases to decrease and, accordingly, intensity falls proportionally to a square of focus’s number. Numerical and experimental results show accordance to analytical calculations.

Key words:
zone plate, binary diffraction lens, local focuses, focal spot size.

References:

  1. Lord Rayleigh, Laboratory notebook entry of April 11, 1871 (quoted: Wood, R.W. Physical Optics – New York: Macmillan, 1934. – P. 37-38.)
  2. Wood, R.W. Phase-reversal zone-plates, and diffraction-telescopes / R.W. Wood // Philos. Mag. – 1898. – Vol. 45. – P. 511-522.
  3. Faklis, D. Diffractive lenses create new opportunities / D. Faklis // Optics & Photonics News. – 1995. – P. 28-39.
  4. Unno, Y. Point-spread function for binary diffractive lenses fabricated with misaligned masks / Y. Unno // Applied Optics. – 1998. – Vol. 37, N 16. – P. 3401-3407.
  5. Rastani, K. Binary phase Fresnel lenses for generation of two-dimensional beam arrays / K. Rastani, A. Marrakchi, S.F. Habiby, W.M. Hubbard, H. Gilchrist and R.E. Nahory // Applied Optics. – 1991. – Vol. 30, N 11. – P. 1347-1354.
  6. Davis, J.A. Subharmonic focal-length intensities formed by Fresnel lenses / J.A. Davis, A.M. Field and D.M. Cot­trell // Applied Optics, 1994. – Vol. 33, N 35. – P. 8194-8196.
  7. Nalimov, А.G. Comparing of modeling methods of x-ray radiation propagation in paraxial area / А.G. Nalimov, S.N. Khonina // Bulletin SSAU. – 2010. – N 4. – P. 238-247.
  8. Osterberg, H. Closed solutions of Rayleigh’s integral for axial points / H. Osterberg, L.W. Smith // J. Opt. Soc. – 1961. – Vol. 51(10). – P. 1050-1054.
  9. Dubra, A. Diffracted field by an arbitrary aperture / A. Dubra, J.A. Ferrari // Am. J. Phys. – 1999. – Vol. 67(1). – P. 87-92.
  10. Romero, J.A. Vectorial approach to Huygens’s principle for plane waves: circular aperture and zone plates / J.A. Romero, L. Hernández // J. Opt. Soc. Am. A. – 2006. – Vol. 23, N 5. – P. 1141-1145.
  11. Khonina, S.N. Fast calculation algorithms for diffraction of radially-vortical laser fields on the microaperture / S.N. Khonina,  A.V. Ustinov, S.G. Volotovsky, M.A. Ananin // Izv. SSC RAS. – 2010. – Vol. 12(3). – P. 15-25.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20