Optical nanoresonator in the ridge of photonic crystal waveguides crossing
N.L. Kazanskiy, P.G. Serafimovich, S.N. Khonina

Full text of article: Russian language.

Abstract:
A new geometry of nonlinear optical resonators in the ridge photonic crystal waveguides is suggested and numerically studied. The symmetry features of resonance modes are explored. It is established that the resonance mode has one axis of reflection symmetry axis for the cylindrical resonator and two axes of reflection symmetry for the ring resonator. It is demonstrated that the resonance mode with two axes of symmetry permits to construct an effective optical resonator. Two ways of optimization of the suggested resonators are explored. First, the optimization with the slit is considered. Second, the different infiltrated materials are investigated. The calculated resonators have the quality factor value about 104 and a small mode volume.

Key words:
nanophotonics; optical nanoresonator; quality factor; ridge photonic crystal waveguide.

References:

  1. Lalanne, P. Photon confinement in photonic crystal nano­cavities / P. Lalanne, C. Sauvan, J.P. Hugonin // Laser & Photon. – 2008. – Rev. 2, N 6. – P. 514–526.
  2. Vuckovic, J. Optimization of the Q Factor in Photonic Crystal Microcavities / J. Vuckovic, M. Loncar, H. Ma­buchi, A. Scherer // IEEE JQE. – 2002. – Vol. 38, N 7. – P. 850-856.
  3. Fan, S. Guided and defect modes in periodic dielectric waveguides / S. Fan, J.N. Winn, A. Devenyi, J.C. Chen, R.D. Meade and J.D. Joannopoulos // J. Opt. Soc. Am. B. – 1995. – Vol. 12(7). – P. 1267-1272.
  4. Velha, P. Ultra-high-reflectivity photonic-bandgap mir­rors in a ridge SOI waveguide / P. Velha, J.C. Rodier, P. Lalanne, J.P. Hugonin, D. Peyrade, E. Picard, T. Char­volin, E. Hadji // New Journal of Physics. – 2006. – Vol. 8. – P. 1-13.
  5. Almeida, V.R. Guiding and confining light in void nano­structure / V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson // Opt. Letters. – 2004. – Vol. 29, N 11. – P. 1209-1211.
  6. Coccioli, R. Smallest possible electromagnetic mode volume in a dielectric cavity / R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii, E. Yablonovitch // IEE Proc. Opto. – 1998. – Vol. 145.– P. 391-397.
  7. Fan, S. Temporal coupled mode theory for Fano resonances in optical resonators / S. Fan, W. Suh, J.D. Joan­nopoulos // J. Opt. Soc. Am. A. – 2003. – Vol. 20. – P. 569-573.
  8. Yanik, M.F. All-optical transistor action with bistable switching in photonic crystal cross-waveguide geometry / M.F. Yanik, S. Fan, M. Soljacic, J.D. Joannopoulos // Opt. Lett. – 2003. – Vol. 28. – P. 2506–2508.
  9. Kazanskiy, N.L. Calculation of optimal crosssections of photonic crystals waveguides by transfer matrix method / N.L. Kazanskiy, P.G. Serafimovich, S.I. Kharitonov // Izvestia of Samara Science Center RAS. – 2002. – V. 4, N 2. – P. 300-307. – (in Russian).
  10. ab-initio.mit.edu/meep/ Controlled 15.08.2011.
  11. Sauvan, M. Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities / C. Sauvan, G. Lecamp, P. Lalanne, J. Hugonin // Opt. Express. – 2005. – Vol. 13. – P. 245–255.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20