Analysis of symmetry properties in focal area at presence in a focusing element with periodic angular dependence
S.N. Khonina
, A.V. Ustinov

Full text of article: Russian language.

Abstract:
The analysis of symmetry properties of distribution in focal area is carried out at focusing of light with periodic phase angular dependence of a kind sin (mj) or cos (mj). On the basis of such phase dependence it is possible to describe the majority of wave aberrations. It is analytically shown that at odd values m focal distribution will be the real function that provides a simple way of generation of the set wave aberrations by means of binary diffractive optical elements. Such possibility can be useful at sharp focusing when presence of certain wave aberrations allows to reduce the sizes of a focal spot.
Numerical modeling confirms analytical calculations and shows that change of radial parameters allows to change a configuration of focal distribution but symmetry in the central part basically is defined by parity m: for even m is observed symmetry of 2m order, and for odd – the symmetryis m order.

Key words:
periodic angle phase dependence, wave aberrations, symmetry of focal distribution.

References:

  1. Born, M. Principlies of Optics / M. Born, E. Wolf. – Oxford: Pergamon Press, 1968.
  2. Kant, R. Superresolution and increased depth of focus: an inverse problem of vector  diffraction / R. Kant // J. Mod. Opt. – 2000. – Vol. 47(5). – P. 905-916.
  3. Khonina, S.N. Analysis of wave aberration influence on reducing focal spot size in a high-aperture focusing system / S.N. Khonina, A.V. Ustinov, E.A. Pelevina // Computer Optics. – 2011. Vol. 35, N 2. – P. 203-219. – (In Russian).
  4. Ojeda-Castañeda, J. Zero axial irradiance by annular screens with angular variation / J. Ojeda-Castañeda, P. An­drés and M. Martínez-Corral // Appl. Opt. – 1992. – Vol. 31. – P. 4600-4602.
  5. Topuzoski, S. Diffraction characteristics of optical elements designed as phase layers with cosine-profiled periodicity in azimuthal direction / S. Topuzoski and L. Janicijevic // J. Opt. Soc. Am. A. – 2011. – Vol. 28, N 12. – P. 2465-2472.
  6. Khonina, S.N. Generation  and selection of laser beams  represented by a superposition of two angular harmonics / S.N. Khonina, V.V. Kotlyar, V.A. Soifer, K. Jefimovs and J. Turunen // J. Mod. Opt. – 2004. – Vol. 51. – P. 761-773.
  7. Kotlyar, V.V. Rotation of laser beams with zero of the orbital angular momentum / V.V. Kotlyar, S.N. Khonina, R.V. Skidanov and V.A. Soifer // Optics Communications. – 2007. – Vol. 274. – P. 8-14.
  8. Love, G.D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator / G.D. Love // Appl. Opt. – 1997. – Vol. 36, N 7. – P. 1517-1524.
  9. Boruah, B.R. Susceptibility to and correction of azimuthal aberrations in singular light beams / B.R. Boruah and M.A.A. Neil // Opt. Express. – 2006. – Vol. 14, N 22. – P. 10377-10385.
  10. Budgor, A.B. Exact  solutions  in the scalar diffraction theory of aberrations / A.B. Budgor // Appl. Opt. – 1980. – Vol. 19, N 10. – P. 1597-1600.
  11. Khonina, S.N. Airy-like two-dimensional distributions / S.N. Khonina // Vestnik SSAU. – 2010. – N 4. – P. 299-311. – (In Russian).
  12. Abramochkin, E. Product of three Airy beams E. Abra­mochkin, E. Razueva // Opt. Lett. – 2011. – Vol. 36, N 19. – P. 3732-3734.
  13. Khonina, S.N. Diffractive optical element matched with Zernike basis / S.N. Khonina, V.V. Kotlyar, Ya. Wang // Pattern Recognition and Image Analysis. – 2001. – Vol. 11(2). – P. 442-445.
  14. Prudnikov, A.P. Integrals and Series. Vol. 2. Special Functions / A.P. Prudnikov, Yu.A. Brychkov and O.I. Ma­richev. – New York: Gordon & Breach Sci. Publ., 1990.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20