The  choice of algorithm parameters in image recognition on the basis of ensemble  classifiers and the maximum posterior probability principle
  A.V. Savchenko
Full text of article: Russian language.
Abstract:
The problem of the  choice of algorithms parameters in automatic image recognition is put and  solved by ensemble classifiers construction using the maximum posterior probability  principle. The new criterion of parameters choice is strictly synthesized for  Kullback-Leibler information discrimination and modern SIFT (Scale-Invariant  Feature Transform) method of object recognition. The program and results of experimental  research in a problem of face recognition with widely used databases (Yale,  AT&T) are presented. It is shown that the proposed criterion allows to  achieve recognition accuracy equal to the algorithm with the best parameters  set, and not only for Kullback-Leibler information discrimination, but also for  other popular distances (Euclidean metric, Kullback information divergence).
Key words:
automatic image recognition,  ensemble classifiers, Kullback-Leibler minimum discrimination information principle,  maximum posterior probability principle.
References:
  - Theodoridis, S. Pattern Recognition (4th Edition)  / S. Theodoridis, C. Koutroumbas. – Elsevier Inc., 2009. –  840 p.
- Forsyth, D.A. Computer Vision: A Modern Approach  / D.A. Forsyth, J. Ponce. – New    Jersey: Prentice Hall, 2003. – 693 p. 
- Zuo, W. Robust Recognition of Noisy and  Partially Occluded Faces Using Iteratively Reweighted Fitting of Eigenfaces /  Wangmeng Zuo, Kuanquan Wang and David Zhang // Conference on Advances in  Multimedia Information Processing, Lecture Notes in Computer Science. – 2006. –  Vol. 4261. – P. 844-851.
- Lowe, D. Distinctive image features from scale-invariant keypoints / D. Lowe //  International Journal of Computer Vision. – 2004. – Vol. 60, N 2. –  P. 91-110. – ISSN 0920-5691.
- Zhuravlev, Yu.I. On algebraic  approach in the problems of pattern recognition or classification / Yu.I. Zhuravlev  // Cybernetics  problems. – 1978. – Vol. 33. – P. 5-68. –  (In Russian). 
- Esmaeili, M. Creating of  Multiple Classifier Systems by Fuzzy Decision Making in Human-Computer  Interface Systems / M. Esmaeili, M. Rahmati // Conference IEEE Fuzzy  Systems, 2007. – P. 1-7. 
- Mazurov, V.D. Method of committees in optimisation and classification / V.D. Mazurov.  – Moscow: “Nauka”  Publisher, 1990. – 248 p. – (In Russian).
- Pardo, M. Learning from data: a tutorial with emphasis on modern pattern  recognition methods / M. Pardo, G. Sberveglieri // Sensors  Journal, IEEE. – 2002. – Vol. 2(3). – P. 203-217. – ISSN 1530-437X.
- Fukunaga, K. Introduction to Statistical Pattern  Recognition; 2nd ed. / K. Fukunaga. – New York: Academic Press, Inc., 1991. – 591 p.
- Chow, C.K. On optimum error and reject trade-off / C.K. Chow // IEEE  Transactions on Information Theory. – 1970. – Vol. 16. – P. 41-46. –  ISSN 0018-9448.
- Tsypkin, Ya.Z. Adaptation and training in automated systems  / Ya.Z. Tsypkin. – Moscow:  “Nauka” Publisher, 1968. – 400 p. – (In Russian)
- Bibikov, S.A. Correction of shadow artifacts on  colorful digital images / S.A. Bibikov, A.V. Nikonorov, V.A. Fursov  // Computer optics. – 2010. – V. 34, N 1. – P. 124-131. – ISSN  0134-2452. – (In  Russian).
- Shapiro, L. Computer vision / L. Shapiro, G. Stockman. – Prentice Hall,  2001. – 752 p.
- Zhang, D. Content-Based Shape Retrieval Using Different Shape Descriptors: A Comparative  Study / D. Zhang, G. Lu // IEEE International Conference on  Multimedia and Expo, 2001. – P. 289-293.
- Savchenko, A.V. Gradient Orientation in a Problem of Automatic Halftone Image  Recognition Based on Statistical Approach / A.V. Savchenko // Vestnik of computer and  information technologies. – 2012. – Vol. 1 – P. 12-16. – ISSN  1810-7206. – (In Russian).
- Gorelik, A.L. Modern state of the art in the recognition problem: several aspects / A.L. Gorelik,  I.B. Gurevich, V.A. Scripkin. – Moscow:  “Radio i Svyazj” Publisher, 1985. – 160 p. – (In Russian).
- Tresp, V. Committee machines / V. Tresp // Handbook for Neural Network Signal  Processing. – 2001. – P. 135-151. 
- Rudakov, K.V. On methods of optimization and monotonous correction in the algebraic  approach to the pattern recognition problem / K.V. Rudakov, K.V. Vorontsov  // Doklady Akademii Nauk. – 1999. – Vol. 367, N 3. – P. 314-317. – ISSN  0869-5652. – (In Russian).
- Kullback, S. Information Theory and Statistics / S. Kullback. – Dover Pub, 1978. – 408 p.
- Savchenko, V.V. Minimum information discrimination principle  in the problem of discrete objects / V.V. Savchenko, A.V. Savchenko // Izvestia vuzov  Rossii: Radioelektronika. – 2005. – Vol. 3. – P. 10-18. – ISSN  1993-8985. – (In Russian).
- Savchenko, A.V. Probability half-tone image model in a problem of unsupervised pattern  recognition based on directed enumeration method / A.V. Savchenko //  Computer optics. – 2011. – Vol. 35(3). – P. 385-394. – ISSN  0134-2452. – (In  Russian). 
- Fursov, V.A. Face recognition on the basis of conjugation indexes in the space of  summarizing invariants / V.A. Fursov, N.E. Kozin //  Computer optics. – 2008. – Vol. 32(4). – P. 400-402. – ISSN 0134-2452. – (In Russian). 
- Face Processing: Advanced Modeling  and Methods / edited by W. Zhao, R. Chellappa. – Elsevier: Academic  Press, 2005. – 768 p.
- The Yale Face database [Electronical Resourse] – http://cvc.yale.edu/projects/yalefaces/yalefaces.html . 
- The AT&T database [Electronical Resourse] – http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html .
- Savchenko, A.V. Automatic image recognition criterion combining based on minimum information-discrimination  principle / A.V. Savchenko // Control systems and  Information Technologies.  – 2011. – Vol. 44, N 2. – P. 22-25. – ISSN 1729-5068. – (In Russian).
- Tan, X. Face recognition from a single image per person: A survey / X. Tan,  S. Chen, Z.H. Zhou, F. Zhang // Pattern Recognition. – 2006. –  Vol. 39, N 9. – P. 1725-1745. – ISSN 0031-3203.
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-2