Enhancement of spatial modal overlap for photonic crystal nanocavities
N.l. kazanskiy, P.G. Serafimovich, S.N. Khonina

Full text of article: Russian language.

Abstract:
New photonic crystal nanocavity geometries are suggested and numerically studied. Such nanocavities have an enhanced spatial modal overlap. It is also possible to independently tune the cavity resonance modes frequencies. The case of degenerate resonance modes is studied. Nanocavities with circular holes and slots are studied. It is demonstrated that the nanocavities with slots allow one to enhance the spatial overlap of orthogonally polarized resonance modes. It is shown that closed slots can be used to increase the quality factor of the nanocavities.

Key words:
optical nanoresonator; photonic crystal waveguide; resonance mode; orthogonally polarized modes.

References:

  1. Lalanne, P. Photon confinement in photonic crystal nano­cavities / P. Lalanne, C. Sauvan, J.P. Hugonin // Laser & Photon. – 2008. – Rev. 2, N 6. – P. 514–526.
  2. Zhang, Y. Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities / Y. Zhang, M. W. McCutcheon, I. B. Burgess, M. Loncar // Opt. Letters. – 2009. – Vol. 34, N 17. – P. 2694-2696.
  3. Rivori, K. Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion / K. Rivoire, S. Buckley, J. Vuckovic // Opt. Express. – 2011. – Vol. 19, N 22. – P. 22198-22207.
  4. Schriever, C. Designing the quality factor of infiltrate photonic wire slot microcavities / C. Schriever, C. Bohley, J. Schilling // Opt. Express. – 2010. – Vol. 18, N 24. – P. 25217-25224.
  5. Yamamoto, T. Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab / T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, T. Kuga // Opt. Express. – 2008. – Vol. 16, N 18. – P. 13809-13817.
  6. Kazanskiy, N.L. Optical nanoresonator in the ridge of photonic crystal waveguides crossing / N.L. Kazanskiy, P.G. Serafimovich, S.N. Khonina // Computer Optics. – 2011. – V. 35, N 4. – P. 426-431. – (In Russian).
  7. Ota, Y. Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity / Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa // Appl. Phys. Lett. – 2009. – Vol. 94. – P. 033102-033102.
  8. Stace, T.M. Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity / T.M. Stace, G.J. Milburn, C.H. W. Barnes // Phys. Rev. B. – 2003. – Vol. 67. – P. 085317-085332.
  9. Fan, S. Guided and defect modes in periodic dielectric waveguides / S. Fan, J.N. Winn, A. Devenyi, J.C. Chen, R.D. Meade and J.D. Joannopoulos // J. Opt. Soc. Am. B. – 1995. – Vol. 12(7). – P. 1267-1272.
  10. Golovashkin, D.L. Optical microrelief diffraction calculation by FDTD method / D.L. Golovashkin, N.L. Kazanskiy, S.M. Malysheva. – LAP Lambert Academic Publishing, 2011. – 236 p. – (In Russian).
  11. Almeida, V.R. Guiding and confining light in void nanostructure / V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson // Opt. Letters. – 2004. – Vol. 29, N 11. – P. 1209-1211.
  12. Volkov, À.V. Microrelief formation with chalcogenide glass semiconductors / À.V. Volkov, N.L. Kazanskiy, Î.Yu. Moiseev // Computer Optics. – 2002. – V. 24. – P. 74-77. – (in Russian).

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20