Road sign recognition  using support vector machines and histogram 
  of oriented gradients
  S.O. Lisitsyn, O.A.  Bayda
Full text of article: Russian language.
Abstract:
In this paper, we  consider   the recognition of traffic signs using support vector machines  (SVMs) and features based on histograms of oriented gradients (HOG). We  approach the training of classifier with two well developed multiclass support  vector machine formulations proposed earlier by Weston & Watkins and  Crammer & Singer. Feature space straightening is approached with  Jensen-Shannon and histogram intersection kernels. Due to computational efficiency  reasons we propose the use of the homogeneous kernel mapping presented  recently. The comparative study based on the German Road Traffic Sign  Recognition Benchmark dataset shows the effectiveness of our approach.
Key words:
machine learning,  pattern recognition, histogram of oriented gradients, multiclass support vector  machines.
References:
  - Lowe, D.G. Object recognition from local  scale-invariant features / D.G. Lowe // Proceedings of the Seventh IEEE  International Conference on Computer Vision. – 1999. – Vol. 2. – P. 1150-1157. 
- Ojala, T. Performance evaluation of texture  measures with classification based on Kullback discrimination of distributions /  T. Ojala, M. Pietikainen, D. Harwood // Proceedings of the 12th IAPR International Conference. – 1994. –  Vol. 1 – P. 582-585.
- Dalal, N. Histograms of Oriented Gradients  for Human Detection. / N. Dalal, W. Triggs // IEEE Computer Society  Conference on Computer Vision and Pattern Recognition CVPR05. – 2005. – Vol. 1(3). – P. 886-893. 
- Ke, Y. PCA-SIFT : A More Distinctive  Representation for Local Image Descriptors / Y. Ke, R. Sikthankar. –  Computer Vision and Pattern Recognition, 2004.
- Vapnik, V.N. Pattern recognition theory / V.N. Vapnik,  A.Ya. Chervonenkis // Moscow: “Nauka” Publisher, 1974. – 416 p. – (In Russian).
- Wang, X. An HOG-LBP Human Detector with  Partial Occlusion Handling / X. Wang, T.X. Han // IEEE Computer  Engineering. – 2009. – P. 32-39. 
- Ruta, A. In-vehicle camera traffic sign  detection and recognition / A. Ruta, F. Porikli, S. Watanabe, Y. Li  // Machine Vision and Applications. – 2011. – Vol. 22(2) – P. 359-375. 
- Shapiro, L. Computer vision / L. Shapiro,  G. Stockman // Prentice Hall, 2001. – 608 p.
- Bordes, A. Solving multiclass support vector  machines with LaRank / A. Bordes, L. Bottou, P. Gallinari, J. Weston  // Proceedings of the 24th International Conference on Machine Learning. – 2007. – P. 89-96. 
- Franc, V. Multi-class Support Vector Machine / V. Franc, V. Hlavac //  IEEE Communication. – 2002. – Vol. 2(1) – P. 5-8. 
- Mitchell, B.F. Finding point of  polyhedron nearest to the origin / B.F. Mitchell, V.F. Demyanov,  V.N. Malozemov // Leningrad: “Vestnik LGU”. – 1971. – N 19 – P. 38-45  – (In Russian). 
- Crammer, K. On the Algorithmic Implementation of Multiclass Kernel-based Vector  Machines / K. Crammer, Y. Singer  // Journal of Machine Learning Research. – Vol. 2. – P. 265-292. 
- Keerthi, S.S. A sequential dual method  for large scale multi-class linear SVMs / S.S. Keerthi,  S. Sundararajan, K.-W. Chang, C.-J. Hsieh, C.-J. Lin // Proceeding  of the 14th ACM SIGKDD international conference on Knowedge discovery and data  mining KDD. – 2008. – P. 408-413. 
- Aizerman, M.A. Theoretical foundations of the potential function method in pattern  recognition learning / M.A. Aizerman, M.A. Braverman, L.I. Rosonoer  // Moscow: “Nauka” Publisher, 1970. – 384 p. – (In Russian).
- Barla, A. Histogram intersection kernel for image classification. / A. Barla,  F. Odone, A. Verri // Proceedings of International Conference on  Image Processing. – 2003. – Vol. 2(1). – P. 513. 
- Martins, A.F.T. Nonextensive  entropic kernels / A.F.T. Martins, M.A.T. Figueiredo, P.M.Q. Aguiar, N.A. Smith,  E.P. Xing // Proceedings of the 25th International Conference on Machine  Learning. – 2008. – P. 640-647. 
- Maji, S. Classification  using intersection kernel support vector machines is efficient / S. Maji, A.C. Berg, J. Malik // IEEE Conference on Computer Vision and Pattern Recognition. – 2008. – P. 1-8. 
- Vedaldi, A. Efficient Additive Kernels via Explicit Feature Maps / A. Vedaldi,  A. Zisserman // IEEE Engineering.  –  2011. – Vol. 10(3)  –  P. 3539-3546. 
- Yosida, K. Functional  analysis / K. Yosida // Springer classic in mathematics, 1996. –  513 p.
- Sonnenburg, S. The  SHOGUN Machine Learning Toolbox / S. Sonnenburg, G. Raetsch,  S. Henschel, C. Widmer, J. Behr, A. Zien, F. De Bona  // Journal of Machine Learning  Research. – 2010.  – Vol. 11(5). – P. 1799-1802.
  
  
  © 2009, IPSI RAS
Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20