Full text of article: Russian language.
Abstract:
Expression for a complex amplitude of paraxial hypergeometric laser beams, propagated in a gradient parabolic waveguide is obtained. Wide class of mode solves of Helmholtz equation in cylindrical coordinates for a gradient parabolic medium is received. This solves are proportion to Kummer functions, but only those have limited energy (physical able), which is equal to Laguerre-Gauss modes. A part of gradient parabolic fiber is considered as a parabolic micro lens, equations for numerical aperture and focal spot full width half maximum are obtained for it. Focal spot diameter can be less then a diffraction limit in a medium with a refraction number is equal to the diffraction number of the lens optical axis. Strict formulation for rings radii of a binar lens, which approximates gradient parabolic lens is obtained.
Key words:
hypergeometric beams, gradient lens, binar lens, waveguide modes, parabolic lens.
References:
- Kotlyar, V.V. Hypergeometric modes / V.V. Kotlyar, R.V. Skidanov, S.N. Khonina, V.A. Soifer // Opt. Lett., 2007. – V. 32, N 7. – P. 742-744.
- Karimi, E. Hypergeometric-Gaussian modes / E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, E. Santameto // Opt. Lett. – 2007. – V. 32. – P. 3053-3055.
- Kotlyar, V.V. Family of hypergeometric laser beams / V.V. Kotlyar, A.A. Kovalev // J. Opt. Soc. Am. A. – 2008. – V. 25, N 1. – P. 262-270.
- Kotlyar, V.V. Generating hypergeometric laser beams with a diffractive optical elements / V.V. Kotlyar, A.A. Kovalev, R.V. Skidanov, S.N. Khonina, J. Turunen // Appl. Opt. – 2008. – V. 47, N 32. – P. 6124-6133.
- Chen, J. Production of confluent hypergeometric beam by computer-generated hologram / J. Chen, G. Wang, Q. Xu // Opt. Eng. – 2011. – V. 50, N 2. – P. 024201.
- Bernardo, B. Data transmission by hypergeometric modes through a hyperbolic-index medium / B. Bernardo, F. Moraes // Opt. Exp. – 2011. – V. 19, N 2. – P. 11264-11270.
- Li, J. Propagation of confluent hypergeometric beam through unaxial crystals orthogonal to the optical axis / J. Li, Y. Chen // Opt. Las. Technol. – 2012. – V. 44. – P. 1603-1610.
- Di Falco, A. Luneberg lens in silicon photonics / A. Di Falco, S.C. Kehr, U. Leonhardt // Opt. Express. – 2011. – V. 19. – P. 5156-5162.
- Zentgrat, T. Plasmonic Luneberg and Eaton lenses / T. Zentgrat, Y. Liu, M.N. Mikkelsen, J. Valentine, X. Zhang // Nat. Nanotechn. – 2011. – V. 6. – P. 151-155.
- Soifer, V.A. Graded photonic quasicrystals / P.N. Dyachenko, V.S. Pavelyev and V.A. Soifer // Opt. Lett. – 2012. – V. 37, N 12. – P. 2178-2180.
- Kotlyar, V.V. Photonic Crystal Mikaelian Lens / Y.R. Triandaphilov, V.V. Kotlyar // Opt. Mem. Neur. Netw. (Inform. Opt.). – 2008. – V. 17. – P. 1-7.
- Kotlyar, V.V. Subwavelength Focusing with a Mikaelian Planar Lens / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Opt. Mem. Neur. Netw. (Inform. Opt.). – 2010. – V. 19. – P. 273-278.
- Kotlyar, V.V. Sharply focusing a radially polarized laser beam using a gradient Mikaelian’s microlens / V.V. Kotlyar, S.S. Stafeev // Opt. Commun. – 2009. – V. 282, N 4. – P. 459-464.
- Kotlyar, V.V. Superresolution mechanism in a planar hyperbolic secant lens / V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov, Y.R. Triandafilov // Computer optics. – 2010. – V. 34, N 4. – P. 428-435. – (In Russian).
- Kotlyar, V.V. Operator description of paraxial light fields / V.V. Kotlyar, S.N. Khonina, Y. Vang // Computer optics. – 2001. – V. 21. – P. 45-52. – (In Russian).
- Mendlovic, D. Fractional Fourier transform and their optical implementation: I / D. Mendlovic, H.M. Ozaktas // J. Opt. Soc. Am. A. – 1993. – V. 10, N 9. – P. 1875-1881.
- Lohmann, A.W. Image rotation, Wigner rotation, and the fractional Fourier transform / A.W. Lohmann // J. Opt. Soc. Am. A. – 1993. – V. 10, N 10. – P. 2118-2186.
- Khonina, S.N. Investigater of propagation of laser beams in a parabolic optical fiber with an integral paraxial operator / A.S. Strilec, S.N. Khonina // Computer optics. – 2007. – V. 31, N 4. – P. 33-39. – (In Russian).
- Prudnikov, A.P. Integrals and series. Special functions / A.P. Prudnikov, J.A. Brychkov, O.I. Marichev. – Moscow: “Nauka” Publisher, 1983. – (In Russian).
- Abramovitz, M. Handbook of mathematical functions. / Ed. by M. Abramovitz, I. Stegun. – Moscow: “Nauka” Publisher, 1979. – (In Russian).
- Dupuis, A. Guiding in the visible with “colorful” solid-core Bragg fiber / A. Dupuis // Opt. Lett. – 2007. – V. 32 – P. 2882-2884.
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20