Subwavelength imaging with magnification by Mikaelian lenses
A.A. Kovalev, A.G. Nalimov, V.V. Kotlyar

Full text of article: Russian language.

Abstract:
Using the Fermat’s principle we estimated position of image spot created by light rays passed from an off-axis point source through two different-size Mikaelian’s lenses. For the optical system with two gradient-index Mikaelian’s lenses, one of which is 2.5 times bigger than the other, an optical superresolution-image of two point sources (with a distance of 0.28l between them) with magnification of 2.1 has been obtained numerically by the FDTD-method. Also, magnification of 3.14 has been obtained by linearly tapered Mikaelian’s lens.

Key words:
linear magnification, superresolution, planar Mikaelian’s lens, hyperbolic secant lens, diffraction limit, Fermat’s principle.

References:

  1. Born, M. Principles of Optics / M. Born, E. Wolf. – 6 ed. – Pergamon, 1986.
  2. Pendry, J.B. Negative refraction makes a perfect lens / J.B. Pendry // Phys. Rev. Lett. – 2000. – Vol. 85(18). – P. 3966-3969.
  3. Blaikie, R.G. Imaging through planar silver lenses in the optical near field / R.G. Blaikie, D.O.S. Melville // J. Opt. A: Pure Appl. Opt. – 2005. – Vol. 7(2). – P. S176-S183.
  4. Melvile, D.O.S. Super-resolution imaging through a planar silver layer / D.O.S. Melvile, R.J. Blaikie // Opt. Express 2005. – Vol. 13(6). – P. 2127-2134.
  5. Fang, N. Sub-diffraction-limited optical imaging with a silver superlens / N. Fang, H. Lee, C. Sun, X. Zhang // Science 2005. – Vol. 308(5721). – P. 534-537.
  6. Kotlyar, V.V. Gradient-index elements of microoptics for superresolution / V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov // Computer Optics – 2009. – Vol. 33. – No. 4. – P. 369–378. – (in Russian).
  7. Kotlyar, V.V. Mechanism of superresolution in a planar hyperbolic secant lens / V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov, Y.R. Triandafilov // Computer Optics – 2010. – Vol. 34. – No. 4. – P. 428–435. – (in Russian).
  8. Jacob, Z. Optical Hyperlens: Far-field imaging beyond the diffraction limit / Z. Jacob, L. Alekseyev, E. Narimanov // Opt. Express. – 2006. – Vol. 14. – P. 8247-8256.
  9. Mikaelian, A.L. Application of stratified medium for waves focusing// Doklady Akademii Nauk SSSR. – 1951 – Vol. 81. – P. 569–571. – (in Russian).
  10. Alekseev, V.M. Optimal control / V.M. Alekseev, V.M. Tikhomirov, S.V. Fomin — Ìoscow: Nauka Publisher, 1979. – (in Russian).
  11. Beliakov, G. Analysis of inhomogeneous optical systems by the use of ray tracing.I. Planar systems / G. Beliakov, D. Chan // Appl. Opt. – 1997. – Vol. 36. – P. 5303-5309.
  12. Mikaelian, A.L. Self-focusing media with variable index of refraction / A.L. Mikaelian // Prog. Opt. 1980. – Vol. 17. – P. 279–345.
  13. Rho, J. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies / J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang // Nature Communications. – 2010. – Vol. 1. – P. 443.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20