Analysis of the axial distribution of a tightly focused beam with different polarizations
S.N. Khonina, A.V. Ustinov

PDF,700 kB

DOI: 10.18287/0134-2452-2013-37-1-59-68.

Full text of article: Russian language.

Pages: 59-67.

Abstract:
The paper analyzes an axial distribution of the tightly focused laser beam with different polarizations. The beam is presented as a superposition of the vortex phase functions. An analytical solution for the each component of the electric field is obtained for the incident beam narrowed by a ring aperture of arbitrary width. Approximate analytical estimates for the axial distribution in elementary functions have been obtained also. This makes to easily analyze the nature of the intensity along the optical axis. The influence of weighted superposition of vortex phase functions in the incident beam and the type of polarization on the relative contributions of the different components of the electric field in the focal region of the optical axis is numerically investigated.

Key words:
tight focusing, vortex phase functions, distribution along the optical axis.

Citation:
Khonina SN, Ustinov AV. Analysis of the axial distribution of a tightly focused beam with different polarizations. Computer Optics 2013; 37(1): 59-67. DOI: 10.18287/0134-2452-2013-37-1-59-68.

References:

  1. Quabis, S. Focusing light to a tighter spot / S. Quabis, R. Dorn, M. Eberler, O. Glockl and G. Leuchs // Opt. Commun. - 2000. - V. 179. - P. 1-7.
  2. Dorn, R. Sharper focus for a radially polarized light beam / R. Dorn, S. Quabis and G. Leuchs // Phys. Rev. Lett. - 2003. - V. 91. - P. 233901.
  3. Kitamura, K. Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam / K. Kitamura, K. Sakai and S. Noda // Opt. Express. - 2010. - Vol.18. - P. 4518-4525.
  4. Wang, H. Creation of a needle of longitudinally polarized light in vacuum using binary optics / H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard and C.T. Chong // Nature Photonics. - 2008. -Vol. 2. - P. 501-505.
  5. Huang, K. 2010 Design of DOE for generating a needle of a strong longitudinally polarized field / K. Huang, P. Shi, X. Kang, X. Zhang and Y.P. Li // Opt. Lett. - 2010. - Vol.35. - P. 965-967.
  6. Khonina, S.N. Controlling the contribution of the electric ?eld components to the focus of a high-aperture lens using binary phase structures / S.N. Khonina, S.G. Volotovsky // J. Opt. Soc. Am. A. - 2010. - Vol. 27, N 10. - P. 2188-2197.
  7. Youngworth, K.S. Focusing of high numerical aperture cy­lindrical-vector beams / K.S. Youngworth and T.G. Brown // Opt. Express. - 2000. - Vol.7. - P. 77-87.
  8. Zhan, Q. Focus shaping using cylindrical vector beams / Q. Zhan and J.R. Leger // Opt. Express. - 2002. - Vol.10. - P. 324-331.
  9. Hell, S. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation / S. Hell and E.H.K. Stelzer // Opt. Commun. - 1992. - Vol. 93. - P. 277-282.
  10. Schrader, M. 4Pi-confocal images with axial superresolution / M. Schrader and S.W. Hell. // J. Microsc. - 1996. - Vol. 183. - P. 189-193.
  11. de Juana, D.M. Transverse or axial superresolution in a 4Pi-confocal microscope by phase only filters / D.M. de Juana, J.E. Oti, V.F. Canales and M.P. Cagigal // J. Opt. Soc. Am. A. - 2003. - Vol. 20. - P. 2172-2178.
  12. Yun, M. Super-resolution with annular binary phase filter in the 4Pi-confocal system / M. Yun, M. Wang and L. Liu // J. Opt. A: Pure Appl. Opt. - 2005. - Vol. 7. - P. 640-644.
  13. Kant, R. Superresolution and increased depth of focus: an inverse problem of vector diffraction / R. Kant // J. Mod. Opt. - 2000. - Vol. 47. - P. 905-916.
  14. Jabbour, T.G. Axial field shaping under high-numerical-aperture focusing / T.G. Jabbour, S.M. Kuebler // Opt. Lett. - 2007. - Vol. 32, N 5. - P. 527-529.
  15. Chen, W. Three-dimensional focus shaping with cylindrical vector beams / W. Chen and Q. Zhan // Opt. Commun. - 2006. - Vol.265. - P. 411-417.
  16. Bokor, N. Generation of a hollow dark spherical spot by 4pi focusing of a radially polarized Laguerre-Gaussian beam / N. Bokor and N. Davidson // Opt. Lett. - 2006. - Vol.31. - P. 149-151.
  17. Bokor, N. A three-dimensional dark focal spot uniformly surrounded by light / N. Bokor and N. Davidson // Opt. Commun. - 2007. - Vol.279. - P. 229-234.
  18. Kozawa, Y. Dark-spot formation by vector beams / Y. Kozawa and S. Sato // Opt. Lett. - 2008. - Vol.33. - P. 2326-2328.
  19. Zhao, Y. Creation of a three-dimensional optical chain for controllable particle delivery / Y. Zhao, Q. Zhan, Y. Zhang and Y.P. Li // Opt. Lett. - 2005. - Vol.30. - P. 848-850.
  20. Yan, S. Generation of multiple spherical spots with a radially polarized beam in a 4pi focusing system / S. Yan, B. Yao, W. Zhao and M. Lei // J. Opt. Soc. Am. A. - 2010. - Vol.27. - P. 2033-2037.
  21. Chen, Z. 4Pi focusing of spatially modulated radially polarized vortex beams / Z. Chen and D. Zhao // Opt. Lett. - 2012. - Vol. 37, N 8. - P. 1286-1288.
  22. Wang, J. Creation of uniform three-dimensional optical chain through tight focusing of space-variant polarized beams / J. Wang, W. Chen and Q. Zhan // J. Opt. - 2012. - Vol. 14. - P. 055004-055009.
  23. Khonina, S.N. Analysis of wave aberration in?uence on reducing focal spot size in a high-aperture focusing system / S.N. Khonina, A.V. Ustinov and E.A. Pelevina // J. Opt. - 2011. - Vol. 13. - P. 095702-095714.
  24. Richards, B. Electromagnetic diffraction in optical systems II. Structure of the image ?eld in an aplanatic system / B. Richards and E. Wolf // Proc. Royal Soc. A. - 1959. - Vol. 253. - P. 358-379.
  25. Khonina, S.N. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system / S.N. Khonina, N.L. Kazanskiy, S.G. Volotovsky // Journal of Modern Optics. - 2011. - Vol. 58(9). - P. 748-760.
  26. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, Ed. M. Abramowitz and I. A. Stegun. - National Bureau of Standards, Washington, 1964. - 1046 p.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20