Integral transform for gradient-index media with linear dependence of dielectric permittivity on transverse cartesian coordinates
A.A. Kovalev, V.V. Kotlyar, D.S. Kalinkina
PDF, 362 kB
Full text of article: Russian language.
DOI: 10.18287/0134-2452-2013-37-2-186-192
Pages: 186-192.
Abstract:
We have obtained an integral transform describing paraxial propagation of a light beam in gradient-index media with linear dependence of dielectric permittivity on transverse Cartesian coordinates. We have shown that propagation of light in such media is equivalent to passing through the prism, propagating in homogeneous media and again passing through the same prism. We have also shown that for the Gaussian beam, propagating in such media, its center is being shifted along a parabola, its radius is coinciding with radius of the Gaussian beam in homogeneous media.
Key words:
Gradient-index media, integral transform, ABCD-transform, paraxial Helmholtz equation.
References:
- Diffractive nanophotonics / Ed. by V.A. Soifer. - Moscow: “Fizmatlit” Publisher, 2011. - 680 p. - (In Russian).
- Luneburg, R.K. Mathematical Theory of Optics / R.K. Luneburg - Berkeley: University of California Press, 1966.
- Zhang, Y. Vector propagation of radially polarized Gaussian beams diffracted by an axicon / Y. Zhang, L. Wang and C. Zheng // J. Opt. Soc. Am. A. - 2005. - Vol. 22. - P. 2542-2546.
- Siegman, A.E. Lasers / A.E. Siegman. - University Science, 1986.
- Ozaktas, H. Efficient computation of quadratic-phase integrals in optics / H. Ozaktas, A. Koç, I. Sari and M. Kutay // Opt. Lett. - 2006. - Vol. 31. - P. 35-37.
- Koç, A. Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals / A. Koç, H. Ozaktas and L. Hesselink // J. Opt. Soc. Am. A. - 2010. - Vol. 27. - P. 1288-1302.
- Kotlyar, V.V. Operator description of paraxial light fields / V.V. Kotlyar, S.N. Khonina, Y. Wang // Computer optics - 2001. - Vol. 21. - P. 45-52. - (In Russian).
- Khonina, S.N. Propagation of laser vortex beams in a parabolic optical fiber / S.N. Khonina, A.S. Striletz, A.A. Kovalev and V.V. Kotlyar // Proc. SPIE. - 2009. - Vol. 7523. - P. 7523B.
- Bandres, M. Airy-Gauss beams and their transformation by paraxial optical systems / M. Bandres and J. Gutiérrez-Vega // Opt. Express. - 2007. - Vol. 15. - P. 16719-16728.
- Striletz, A.S. Matching and research of methods, based on differential and integral operators of laser beams propagation in weakly inhomogeneous media / A.S. Striletz, S.N. Khonina // Computer optics. - 2008. - Vol. 32, N 1. - P. 33-38. - (In Russian).
- Efremidis, N.K. Ary trajectory engineering in dynamic linear index potentials / N.K. Efremidis // Opt. Lett. - 2011. - Vol. 36. - P. 3006-3008.
- Kalnins, E.G. Lie theory and separation of variables. 5. The equations iUt + Uxx = 0 and iUt + Uxx − c/x2U = 0 / E.G. Kalnins and W. Miller Jr. // J. Math. Phys. - 1974. - Vol. 15. - P. 1728-1737.
- Berry, M.V. Nonspreading wave packets / M.V. Berry and N.L. Balazs // Am. J. Phys. - 1979. - Vol. 47. - P. 264-267.
- Ye, Zh. Acceleration control of Airy beams with optically induced refractive-index gradient / Zh. Ye, S. Liu, C. Lou, P. Zhang, Y. Hu, D. Song, J. Zhao, Z. Chen // Opt. Lett. –2011. - Vol. 36. - P. 3230-3232.
- Siviloglou, G.A. Accelerating ?nite energy Airy beams / G.A. Siviloglou and D.N. Christodoulides // Opt. Lett. - 2007. - Vol. 32. - P. 979-981.
- Touam, T. Analytical solution for a linearly graded-index-profile planar waveguide / T. Touam and F. Yergeau // Appl. Opt. - 1993. - Vol. 32. - P. 309-312.
- Neganov, V.A. Linear macroscopic electrodynamics / V.A. Neganov, S.B. Raevsky, G.P. Yarovoy - Moscow: “Radio i svyaz” Publisher, 2000. - 512 p. - (In Russian).
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20