Design lenses forming paraxial longitudinal distribution according
to their spatial spectra
S.N. Khonina, A.V. Ustinov
PDF, 628 kB
Full text of article: Russian language.
DOI: 10.18287/0134-2452-2013-37-2-193-202
Pages: 193-202.
Abstract:
We consider radially-symmetric diffractive optical elements forming along optical axis a set of local foci or zero values by the specific law. The axial distribution is determined by the spatial spectrum of the radial function of the optical element that allows us to call these elements longitudinally-spectral lenses. The theoretical explanation of the effect is based on the reduction of the on-axis Fresnel-Hankel transform to the one-dimensional Fourier transform. We investigate different lenses, including that forming the longitudinal-modal distribution proportional to the Airy and Gauss-Hermite functions.
Key words:
diffraction in the paraxial region, Fresnel-Hankel transform, Fourier transform, the Airy function, Gauss-Hermite modes.
References:
- Arimoto, R. Imaging properties of axicon in a scanning optical system / R. Arimoto, C. Saloma, T. Tanaka and S. Kawata // Appl. Opt. – 1992. – Vol. 31(31). – P. 6653-6657.
- Kotlyar, V.V. Noncontact precision measurement of linear displacement using DOE forming Bessel modes / V.V. Kotlyar, R.V. Skidanov, S.N. Khonina // Computer Optics. – 2001. – Vol. 21. – P. 102-104. – (In Russian).
- Wang, K. Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement / K. Wang, L. Zeng and Ch. Yin // Opt. Commun. – 2003. – Vol. 216. – P. 99-103.
- Fortin, M. Optical tests with Bessel beam interferometry / Mathieu Fortin, Michel Piché and Ermanno F. Borra // Optics Express. – 2004. – Vol. 12, N 24. – P. 5887-5895.
- Leitgeb, R.A. Extended focus depth for Fourier domain optical coherence microscopy / R.A. Leitgeb, M. Villiger, A.H. Bachmann, L. Steinmann and T. Lasser // Opt. Lett. – 2006. – Vol. 31(16). – P. 2450-2452.
- Lee, K.-S. Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range / Kye-Sung Lee, Jannick P. Rolland // Opt. Lett. – 2008. – Vol. 33(15). – P. 1696-1698.
- Lu, J. Producing deep depth of field and depth-independent resolution in NDE with limited diffraction beams / Jian-yu Lu, J.F. Greenleaf // Ultrason. Imag. – 1993. – Vol. 15(2). – P. 134-149.
- Arlt, J. Generation of beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam / J. Arlt, M. Padgett / Opt. Lett. – 2000. – Vol. 25(4). – P. 191-193.
- Garces-Chavez, V. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam / V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett and K. Dholakia // Nature. – 2002. – V. 419. – P. 145-147.
- Soifer, V.A. Optical microparticle manipulation: advances and new possibilities created by diffractive optics / V.A. Soifer, V.V. Kotlyar and S.N. Khonina // Phys. Part. Nucl. – 2004. – Vol. 35. – P. 733-766.
- Zhao, Y. Creation of a three-dimensional optical chain for controllable particle delivery / Y. Zhao, Q. Zhan, Y. Zhang and Y.P. Li // Opt. Lett. – 2005. – Vol. 30. – P. 848-850.
- Davidson, N. Holographic axilens: high resolution and long focal depth / N. Davidson, A.A. Friesem and E. Hasman // Opt. Lett. – 1991. – V. 16(7). – P. 523-525.
- Computer generated diffractive multi-focal lens / Golub M.A., Doskolovich L.L., Kazanskiy N.L., Kharitonov S.I., Soifer V.A. // Journal of Modern Optics. - 1992. - Vol.39, № 6. - P.1245-1251.
- Soifer, V.A. Multifocal diffractive elements / Soifer V.A.,
Doskolovich L.L., Kazanskiy N.L. // Optical Engineering. - 1994. - Vol.33, № 11. - P.3610-3615.
- Analysis of quasiperiodic and geometric optical solutions of
the problem of focusing into an axial segment / Doskolovich L.L., Kazanskiy N.L., Soifer V.A., Tzaregorodtzev A.Ye. // Optik. - 1995. - Vol.101, № 2. - P.37-41.
- Chavez-Cerda, S. Interference of traveling nondiffracting beams / S. Chavez-Cerda, M.A. Meneses-Nava and J. Miguel Hickmann // Opt. Lett. – 1998. – Vol. 23. – P. 1871-1873.
- Kotlyar, V.V. Phase formers of light fields with longitudinal periodicity / V.V. Kotlyar, V.A. Soifer and S.N. Khonina // Optics and Spectroscopy. – 1998. – Vol. 84(5). – P. 771-777.
- Design of microlenses with long focal depth based on the general focal length function / Jie Lin, Jianlong Liu, Jiasheng Ye and Shutian Liu // J. Opt. Soc. Am. A. – 2007. – Vol. 24(6). – P. 1747-1751.
- Khonina, S.N. Fracxicon – diffractive optical element with conical focal domain / S.N. Khonina, S.G. Volotovsky // Computer Optics. – 2009. – Vol. 33, N 4. – P. 401-411. – (In Russian).
- Khonina, S.N. Calculation of the focusators into a longitudinal line segment and study of a focal area / S.N. Khonina, V.V. Kotlyar, V.A. Soifer // J. Modern Optics. – 1993. – Vol. 40(5). – P. 761-769.
- Methods for Computer Design of Diffractive Optical Elements, ed. Victor A. Soifer. – New York: John Wiley & Sons, Inc., 2002. – 765 p.
- Chen, W. Three-dimensional focus shaping with cylindrical vector beams / W. Chen and Q. Zhan // Opt. Commun. – 2006. – Vol. 265. – P. 411-417.
- Menon, R. Design of diffractive lenses that generate optical nulls without phase singularities / R. Menon, P. Rogge, H.?Y. Tsai // J. Opt. Soc. Am. A. – 2009. – Vol. 26, N 2. – P. 297-304.
- Kachalov, D.G. Optimization of binary DOE forming intensity distribution along an axial focal zone / D.G. Kachalov, S.V. Pavelyev, S.N. Khonina // Computer Optics. – 2009. – Vol. 33, N 4. – P. 441-445. – (In Russian).
- Saavedra, G. Fractal zone plates / G. Saavedra, W.D. Furlan, J.A. Monsoriu // Opt. Lett. – 2003. – Vol. 28, N 12. – P. 971-973.
- Casanova, C. Self-similar focusing with generalized devil’s lenses / C. Casanova, W.D. Furlan, L. Remón, A. Calatayud, J.A. Monsoriu, O. Mendoza-Yero // J. Opt. Soc. Am. A. – 2011. – Vol. 28, N 2. – P. 210-213.
- Khonina, S.N. Binary lens: investigation of local focuses / S.N. Khonina, A.V. Ustinov, R.V. Skidanov // Computer Optics. – 2011. – Vol. 35, N 3. – P. 339-346. – (In Russian).
- Abramowitz, M. Handbook of Mathematical Functions / M. Abramowitz and I.A. Stegun – Courier Dover Publications, 1972. – 1046 p.
- Born, M. Principles of Optics / M. Born, E. Wolf. – 6th ed. – Pergamon, Oxford, 1980. – Chap. 8.3.
- Siviloglou, G.A. Accelerating finite energy Airy beams / G.A. Siviloglou, D.N. Christodoulides // Opt. Letters. – 2007. – V. 32(8). – P. 979-981.
- Banders, M.A. Airy-Gauss beams and their transformation by paraxial optical systems / M.A. Banders, J.C. Gutierrez-Vega // Opt. Express. – 2007. – V. 15(25). – P. 16719-16728.
- Khonina, S.N. Bounded one-dimensional Airy beams: laser fan / S.N. Khonina, S.G. Volotovsky // Computer Optics. – 2008. – Vol. 32, N 2. – P. 168-174. – (In Russian).
- Khonina, S.N. Airy-like two-dimensional distributions / S.N. Khonina // Bulletin of Samara State Aerospace University. – 2010. – Vol. 4(24). – P. 299-311. – (In Russian).
- Dowski, E.R. Extended depth of field through wavefront coding / E.R. Dowski and W.T. Cathey // Appl. Opt. – 1995. – Vol. 34. – P. 1859-1866.
- Marks, D.L. Three-dimensional tomography using a cubic-phase plate extended depth-of-field system / D.L. Marks, R.A. Stack and D.J. Brady // Opt. Lett. – 1999. – Vol. 24. – P. 253-255.
- Pan, C. Extension ratio of depth of field by wavefront coding method / C. Pan, J. Chen, R. Zhang, S. Zhuang // Opt. Express. – 2008. – Vol. 16(17). – P. 13364-13371.
- Khonina, S.N. Phase apodization of imaging system to increase the focal depth in coherent and incoherent cases / S.N. Khonina // Computer Optics. – 2012. – Vol. 36, N 3. – P. 357-364. – (In Russian).
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20