PDF, 819 kB
Full text of article: Russian language.
DOI: 10.18287/0134-2452-2013-37-3-297-306
Pages: 297-306.
Abstract:
It is analytically and numerically shown that nonparaxial mode laser beams propagating along the axis of a crystal demonstrate the periodic change of intensity connected with an interference of ordinary and extraordinary beams.
For Bessel beams the oscillation period inversely proportional to a square of spatial frequency of a laser beam and a difference of dielectric permittivity. For the linearly-polarized radiation there is a periodic redistribution of energy between two transversal components, and for beams with circular polarization energy is pumped from an initial beam into the vortex beam of the second order and vice-versa. The received dependence allows to select parameters of an incident beam with length of a crystal for full transformation to the vortex beam.
For Gaussian beams similar periodic changes have nonlinear character. Laguerre-Gaussian laser modes with high radial order show a behavior close to Bessel beams on small distances. With increase of a distance the length of a period is increasing and the beam is astigmatically deforming.
Key words:
uniaxial crystal, mode laser beams of the high order, periodic change of intensity, transformation into a vortex beams
References:
- Yariv, А. Optical Waves in Crystals / А. Yariv, P. Yeh. – New York: John Wiley and Sons, 1984, 2003.– 589 p.
- Fedorov, F.I. Optics of Anisotropic Media / F.I. Fedorov. – Minsk: Acad. Nauk BSSR Publisher, 1958. – 381 p.– (In Russian).
- Ciattoni, A. Circularly polarized beams and vortex generation in uniaxial media / A. Ciattoni, G. Cincotti, C. Palma // J. Opt. Soc. Am. A. – 2003. – Vol. 20(1). – P. 163-171.
- Marrucci, L. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media / L. Marrucci, C. Manzo and D. Paparo // Phys. Rev. Lett. – 2006. – Vol. 96. – P. 163905-163908.
- Fadeyeva, T.A. Spatially engineered polarization states and optical vortices in uniaxial crystals / T.A. Fadeyeva, V.G. Shvedov, Y.V. Izdebskaya, A.V. Volyar, E. Brasselet, D.N. Neshev, A.S. Desyatnikov, W. Krolikowski and Y.S. Kivshar // Opt. Expr. – 2010. – Vol. 18(10). – P. 10848-10863.
- Picon, A. Spin and orbital angular momentum propagation in anisotropic media: theory / A. Picon, J. Benseny, Mompart and G.F. Calvo // J. Opt. – 2011. – Vol. 13. – P. 064019-064025.
- Stepanov, M.A. Transformation of Bessel beams under internal conical refraction / M.A. Stepanov // Optics Communications. – 2002. – Vol. 212. – P. 11-16.
- Zusin, D.H. Bessel beam transformation by anisotropic crystals / D.H. Zusin, R. Maksimenka, V.V. Filippov, R.V. Chulkov, M. Perdrix, O. Gobert and A.S. Grabtchikov // J. Opt. Soc. Am. A – 2010. – Vol. 27, N 8. – P. 1828-1833.
- Khilo, N.A. Conical diffraction and transformation of Bessel beams in biaxial crystals / N.A. Khilo // Optics Communications. – 2013. – Vol. 286. – P. 1-5.
- Loussert, C. Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media / C. Loussert and E. Brasselet // Opt. Lett. – 2010. – Vol. 35. – P. 7-9.
- Fadeyeva, T.A. Extreme spin-orbit coupling in crystal-traveling paraxial beams / T.A. Fadeyeva and A.V. Volyar // J. Opt. Soc. Am. A. – 2010. – Vol. 27, N 3. – P. 381-389.
- Belskii, A.M. Internal conical refraction of bounded light beams in biaxial crystals / A.M. Belskii, A.P. Khapalyuk // Opt. Spectrosc. – 1978. – Vol. 44. – P. 540-544. – (In Russian).
- Belsky, A.M. Internal conical refraction of light beams in biaxial gyrotropic crystals / A.M. Belsky, M.A. Stepanov // Opt. Commun. – 2002. – Vol. 204. – P. 1-6.
- Berry, M.V. Conical diffraction: observations and theory / M.V. Berry, M.R. Jeffrey, J.G. Lunney // Proc. R. Soc. A. – 2006. – Vol. 462. – P. 1629-1642.
- Kotlyar, V.V. An algorithm for the generation of laser beams with longitudinal periodicity: rotating images / V.V. Kotlyar, V.A. Soifer, S.N. Khonina // Journal of Modern Optics. – 1997. – Vol. 44(7). – P. 1409-1416.
- Kotlyar, V.V. Rotation of Gauss-Laguerre multimodal light beams in free space // V.V. Kotlyar, V.A. Soifer, S.N. Khonina // Techn. Phys. Lett. – 1997. – Vol. 23(9). – P. 657-658.
- Brasselet, E. Dynamics of optical spin-orbit coupling in uniaxial crystals / E. Brasselet, Y. Izdebskaya, V. Shvedov, A.S. Desyatnikov, W. Krolikowski and Yu.S. Kivshar // Opt. Lett. – 2009. – Vol. 34. – P. 1021-1023.
- Doskolovich, L.L. Integral representations for solutions of maxwell's equations for anisotropic media / L.L. Doskolovich, N.L. Kazanskiy, S.I. Kharitonov // Computer Optics. – 2010. – Vol. 34, N 1. – P. 52-57. – (In Russian).
- Khonina, S.N.. Analogue of Rayleigh–Sommerfeld integral for anisotropic and gyrotropic media / S.N. Khonina, S.I. Kharitonov // Computer Optics. – 2012. – Vol. 36, N 2. – P. 172-182. – (In Russian).
- Khonina, S.N. Periodic intensity change for laser mode beams propagation in anisotropic unaxial crystals / S.N. Khonina, S.G. Volotovsky, S.I. Kharitonov // Izv. SNC RAS. – 2012. – Vol. 14(4). – P. 18-27. – (In Russian).
- Khonina, S.N. Design lenses forming paraxial longitudinal distribution according to their spatial spectra / S.N. Khonina, A.V. Ustinov // Computer Optics.. – 2013. – Vol. 37, No. 2. – P. 193-202. – (In Russian).
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20