Classification of binary quasicanonical number systems in imaginary quadratic fields
P. S. Bogdanov, V. M. Chernov

PDF, 326 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2013-37-3-391-400

Pages: 391-400.

Abstract:
In this paper all possible binary quasicanonical number system in imaginary quadratic fields are considered. For representation of algebraic integers of imaginary quadratic fields in the specified number systems an algorithm based on the division with remainder is used. In addition, the algorithms of the basic arithmetic operations in these number systems are synthesized.

Key words:
canonical numerical system, norm division with remainder, quasicanonical numerical system, imaginary quadratic fields.

References:

  1. Grunwald, V. Intorno all'aritmetica dei sistemi numerici a base negativa con particolare riguardo al sistema numerico a base negativo-decimale per lo studio delle sue analogie coll'aritmetica ordinaria (decimale) / V. Grunvald // Giornale di matematiche di Battaglini. – 1885. – N 23. – P. 203-221.
  2. Knuth, D. E. The Art of Computer Programming. Vol. 2 Semi-numerical Algorithms / D. E. Knuth. – 3rd edition – London: Addison Wesley, 1998.
  3. Katai, I. Canonical number systems for complex integers / I. Katai, J. Szabo // Acta Sci. Math. (Szeged) – 1975. – Vol. 37. – P. 255-260.
  4. Kovacs, B. Canonical number systems in algebraic number fields / B. Kovacs // Acta Math. Hungar. – 1981. – Vol. 37. – P. 405-407.
  5. Katai, I. Kanonische Zahlensysteme in der Theorie der Quadratischen Zahlen / I. Katai, B. Kovacs // Acta Sci. Math. (Szeged). – 1980. – Vol. 42. –P. 99-107.
  6. Katai, I. Canonical number systems in imaginary quadratic fields / I. Katai, B. Kovacs // Acta Math. Hungar. – 1981. – Vol. 37 – P. 159-164.
  7. Gilbert, W.J. Radix representations of quadratic fields / W.J. Gilbert // J. Math. Anal. Appl. – 1981. – Vol. 83 – P. 264-274.
  8. Akiyama, S. Topological properties of two-dimensional number systems / S. Akiyama, J.M. Thuswaldner // J. Th´eor. Nombres Bordeaux – 2000. – Vol. 12. – P. 69-79.
  9. Akiyama, S. On the topological structure of fractal tilings generated by quadratic number systems / S. Akiyama, J.M. Thuswaldner // Comput. Math. Appl. – 2005. – Vol. 49, N 9-10. – P. 1439-1485.
  10. Katai, I. Number systems and fractal geometry / I. Katai – Jannus Pannonius University Pecs, 1995.
  11. Grochenig, K. Multiresolution analysis, Haar bases, and self-similar tilings of Rn. / K. Grochenig, W. R. Madych // IEEE Trans. Inform. Theory. – 1992. – Vol. 38 – P. 556-568.
  12. Gilbert, W. J. Complex numbers with three radix representations / W. J. Gilbert // Canadian J. Math. – 1982. – Vol. 34. – P. 1335-1348.
  13. Indlekofer, K.-H. Some remarks on generalized number systems / K.-H. Indlekofer, I. Katai, P. Racsko // Acta Sci. Math. (Szeged). – 1993. – Vol. 57. – P. 543-553.
  14. Katai, I. On number systems in algebraic number fields / I. Katai, I. Kornyei // Publ. Math. Debrecen. – 1992. – Vol. 41 – P. 289-294.
  15. Praggastis, B. Numeration systems and Markov partitions from self-similar tilings / B. Praggastis // Trans. Amer. Math. Soc. – 1999. – Vol. 351, N 8. – P. 3315-3349.
  16. Duvall, P. The Hausdorff dimension of the boundary of a self-similar tile / P. Duvall, J. Keesling, A. Vince // J. London Math. Soc. – 2000. – Vol. 61 – P. 748-760.
  17. Gilbert, W. J. Complex bases and fractal similarity / W.J. Gilbert // Ann. sc. math. Quebec. – 1987. – Vol. 11, N 1 – P. 65-77.
  18. Scheicher, K. Canonical number systems, counting automata and fractals / K. Scheicher, J. M. Thuswaldner // Math. Proc. Cambridge Philos. Soc. – 2002 – Vol. 133, N 1 – P. 163-182.
  19. Veerman, J. J. P. Hausdorff dimension of boundaries of self-affine tiles in Rn. / J.J.P. Veerman // Bol. Mex. Mat. – 1998. – Vol. 3, N. 4. – P. 1-24.
  20. Wang, Y. Self-affine tiles / Y. Wang // Advances in Wavelet, Springer. – 1998. – P. 261-285.
  21. Solomyak, B. Dynamics of self-similar tilings / B. Solomyak // Ergodic Theory Dynam. Systems. – 1997. – Vol 17, N 3. – P. 695-738.
  22. Bratteli, O. Iterated function systems and permutation representations of the Cuntz algebra / O. Bratteli, P.E.T. Jorgensen // Mem. Amer. Math. Soc. – 1999. – Vol. 139, N 663.
  23. Wang, Y. Wavelets, tiling, and spectral sets / Y. Wang // Duke Math. J. – 2002. – Vol. 114, N 1. – P. 43-57.
  24. Borevich, Z.I. Number theory / Z.I. Borevich, I.R. Shafarevich – Moscow.: “Nauka” Publisher, 1985. – 504 p. – (in Russian).
  25. Chernov, V.M. Arithmetical methods of synthesis of fast algorithms of Discrete orthogonal Transforms / V.M. Chernov. – Moscow.: “Fizmatlit” Publisher. 2007. – 264 p. – (in Russian).
  26. Kovacs, A. Generalized binary number system / A. Kovacs // Annales Univ. Sci. Budapest, Sect. Comp. – 2001. – Vol. 20. – P. 195-206.
  27. Bogdanov, P.S. Gaussian integers representation in Pitti’s number system / P.S. Bogdanov // Computer Optics. – 2010. – Vol. 34, N 4. – P. 561-566.
  28. Fedoseev, V. Cryptography and Canonical Number Systems in Quadratic Fields / V. Fedoseev, V. Chernov // Machine Graphic & Vision. – 2006. – Vol. 15, N ¾. – P. 363-372.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20