Analysis of flat beam diffraction by divergent fracxicon in nonparaxial mode
A.V. Ustinov, S.N. Khonina

PDF, 599 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-1-42-50

Pages: 42-50.

Abstract:
Theoretical and numerical analysis of flat beam diffraction by fracxicon with value of power less than unity are performed within the nonparaxial scalar model. Using integration by parts of the Rayleigh-Sommerfeld integral of first type and applying the modified method of stationary phase we obtain the expression of the axial complex distribution satisfying the boundary conditions for on the optical axis. The results obtained by numerical integration show good agreement with analytical estimates. Numerical examples show that the divergent fracxicon allows to form an extended axial light line with diameter of the order of the wavelength longer and more uniform than provides a linear axicon.

Key words:
divergent fracxicon, nonparaxial mode, axial light line, uniform axial intensity distribution.

References:

  1. Koronkevich, V.P. Lensacon / V.P. Koronkevich, I.A. Mik­haltsova, E.G. Churin and Yu.I. Yurlov // Аppl. Opt. – 1993. – V. 34(25). – P. 5761-5772.
  2. Parigger, C. Spherical aberration effects in lens–axicon doublets: theoretical study / C. Parigger, Y. Tang, D.H. Plemmons and J.W.L. Lewis // Аppl. Opt. – 1997. – V. 36(31). – P. 8214-8221.
  3. Burvall, A. Axicon imaging by scalar diffraction theory / A. Burvall. – PhD thesis, Stockholm, 2004.
  4. Khonina, S.N. Fracxicon – diffractive optical element with conical focal domain / S.N. Khonina, S.G. Volotovsky // Computer optics. – 2009. – V. 33, N 4. – P. 401-411. – (In Russian).
  5. Khonina, S.N. The lensacon: nonparaxial effects / S. N. Khonina, N. L. Kazanskiy, A. V. Ustinov, and S. G. Volotovskiy // J. Opt. Technol. 78 (11), 724-729 (2011).
  6. Ustinov, А.V. Generalized lens: the analysis of axial and cross-section distribution / А.V. Ustinov, S.N. Khonina // Computer optics. – 2013. – V. 37, N 3. – P. 305-315. – (In Russian).
  7. Sochacki, J. Annular-aperture logarithmic axicon / J. Sochacki, Z. Jaroszewicz, L.R. Staronski and A. Kolodziejczyk // J. Opt. Soc. Am. A. – 1993. – V. 10. – P. 1765-1768.
  8. Ustinov, А.V. Geometrooptic analysis of generalized refractive lenses / A. V. Ustinov, S. N. Khonina // The Bulletin of Samara Scientific Center of RAS. – 2012. – V. 14(4). – P. 28-37. – (In Russian).
  9. Ustinov, А.V. Comparative analysis of parabolic lens and axicon in geometric and scalar paraxial optical models/ A. V. Ustinov, A. V. Karsakov, S. N. Khonina // The Bulletin SSAU. – 2012. – № 4(35). – C. 230-239. – (In Russian).
  10. Tucker, S.C. Extended depth of field and aberration control for inexpensive digital microscope systems / S.C. Tucker, W.T. Cathey and E.R. Dowski // Opt. Express. – 1999. – V. 4(11). – P. 467-474.
  11. Wach, H. Control of chromatic focal shift through wavefront coding / H. Wach, E.R. Dowski and W.T. Cathey // Appl. Opt. – 1998. – V. 37. – P. 5359-5367.
  12. Marks, D.L. Three-dimensional tomography using a cubic-phase plate extended depth-of-field system / D.L. Marks, R.A. Stack and D.J. Brady // Opt. Lett. – 1999. – V. 24. – P. 253-255.
  13. Narayanswamy, R. Extending the imaging volume for biometric iris recognition / R. Narayanswamy, G.E. Johnson, P.E.X. Silveira and H.B. Wach // Appl. Opt. – 2005. – V. 44. – P. 701-712.
  14. Sherif, S.S. Phase plate to extend the depth of field of incoherent hybrid imaging systems / S.S. Sherif, W.T. Cathey and E.R. Dowski // Applied Optics. – 2004. – V. 43(13). – P. 2709-2721.
  15. Castro, A. Asymmetric phase masks for extended depth of field / A. Castro and J. Ojeda-Castaneda // Applied Optics. – 2004. – V. 43(17). – P. 3474-3479.
  16. Khonina, S.N. Axicons application in imaging systems for increasing depth of focus / S.N. Khonina, D.A. Savelyev // The Bulletin of Samara Scientific Center of RAS. – 2011. – V. 13, No. 6. – P. 7-15. – (In Russian).
  17. Khonina, S.N. Phase apodization of imaging system to increase the focal depth in coherent and incoherent cases/ S.N. Khonina // Computer optics. – 2012. – V. 36, No. 3. – P. 357-364. – (In Russian).
  18. Methods for Computer Design of Diffractive Optical Elements, ed. V. A. Soifer – John Wiley & Sons, Inc., New York, 2002, 765 p.
  19. Khonina, S.N. Hypergeometrical beams in a near zone of diffraction within the limits of scalar model / S.N. Khonina, S.А. Balalaev // Computer optics. – 2009. – V. 33, N 4. – P. 427-435. – (In Russian).
  20. Born, M. Principles of Optics / M. Born, E. Wolf – 6th ed. – Oxford: Pergamon, 1980. – Chap. 8.3.
  21. Totzeck, M. Validity of the scalar Kirchhoff and Rayleigh-Sommerfeld diffraction theories in the near field of small phase objects / M. Totzeck // J. Opt. Soc. Am. A. – 1991. – V. 8(1). – P. 27-32.
  22. Tsoy, V.I. The use of Kirchho? approach for the calculation of the near ?eld amplitudes of electromagnetic ?eld / V.I. Tsoy, L.A. Melnikov // Optics Communications. – 2005. – V. 256. – P. 1-9.
  23. Khonina, S.N. Propagation of the radially-limited vortical beam in a near zone. I. Calculation algorithms / S.N. Khonina, A.V. Ustinov, A.A. Kovalev, S.G.Volotovsky  // Computer optics. – 2010. – V. 34, No. 3. – P. 317-332. – (In Russian).
  24. Khonina, S.N. Diffraction at binary microaxicons in the near field / S.N. Khonina, P.G. Serafimovich, D.A. Savelyev, I.A. Pustovoi // J. Opt. Technol. - 2012. - V. 79, No. 10. - P. 626-631.
  25. Dubra, A. Diffracted field by an arbitrary aperture / A. Dubra and J.A. Ferrari // Am. J. Phys. – 1999. – V. 67(1). – P. 87-92.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20