Diffraction-free lommel beams
A.A. Kovalev, V.V. Kotlyar

PDF, 325 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-2-188-192

Pages: 188-192.

Abstract:
We consider a new family of nonparaxial diffraction-free laser beams with their complex amplitude being proportional to the n-th order Lommel function of two variables. Therefore, these beams are called Lommel beams (L-beams). We obtained explicit analytical expressions for the angular spectrum of plane waves and for the orbital angular momentum of the L-beams. Transverse intensity of the L-beams has a reflective symmetry with respect to both Cartesian coordinate axes. Since transverse intensity distribution of L-beams does not change upon propagation, L-beams are modes of free space (L-modes). Functions of complex amplitudes of even (n = 2p) and odd (n = 2p + 1) L-modes are mutually orthogonal. For certain parameter, L-modes become traditional Bessel modes.

Key words:
diffraction-free laser beam, Bessel mode, Lommel mode of two variables, orbital angular momentum.

References:

  1. Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory // Journal of the Optical Society of America A. – 1987. – V. 4(4). – P. 651-654.
  2. Berry, M.V. Nonspreading wave packets / M.V. Berry, N.L. Balazs // American Journal of Physics. – 1979. – V. 47(3). – P. 264-267.
  3. Lu, J. Diffraction-limited beams and their applications for ultrasonic imaging and tissue characterization / J. Lu, J. Greenleaf // Proc. SPIE – 1992. – V. 1733. – P. 92-119.
  4. Dennis, M.R. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams / M.R. Dennis, J.D. Ring // Optics Letters. – 2013. – V. 38(17). – P. 3325-3328.
  5. Kotlyar, V.V. Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum / V.V. Kot­lyar, A.A. Kovalev, V.A. Soifer // Computer Optics. – 2014. – V. 38(1). – P. 4-10.
  6. Kotlyar, V.V. Asymmetric Bessel modes / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Opt. Lett. – 2014. – Vol. 39. – No. 8. – P. 2395–2398.
  7. Nelson, W. Propagation of Bessel and Airy beams through atmospheric turbulence / W. Nelson, J.P. Palastro, C.C. Da­vis, P. Sprangle // Journal of the Optical Society of America A. – 2014. – V. 31(3). – P. 603-609.
  8. Froehly, L. Spatiotemporal structure of femtosecond bessel beams from spatial light modulators / L. Froehly, M. Jacquot, P.A. Lacourt, J.M. Dudley, F. Courvoisier // Journal of the Optical Society of America A. – 2014. – V. 31(4). – P. 790-793.
  9. Born, M. Principles of Optics / M. Born, E. Wolf. – 6-th ed. – Pergamon, 1986.
  10. Watson, G.N. A Treatise on the Theory of Bessel Functions / G.N. Watson. – 2nd ed. – Cambridge, England: Cambridge University Press, 1966. – P. 537-550. – (§16.5-16.59).
  11. Sheppard, C.J.R. Focusing of vortex beams: Lommel treatment // Journal of the Optical Society of America A. – 2014. – V. 31(3). – P. 644-651.
  12. Aleahmad, P. Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams / P. Aleahmad, M.-A. Miri, M.S. Mills, I. Kaminer, M. Segev, D.N. Christodoulides // Physical Review Letters. – 2012. – V. 109. – P. 203902.
  13. Skidanov,  R.V. Diffractive optical elements for the formation of combinations of vortex beams in the problem manipulation of microobjects / R.V. Skidanov, S.V. Ganchev­skaya // Computer Optics. – 2014. – V. 38(1). – P. 65-71.
  14. Kotlyar, V.V. Hermite-Gaussian modal laser beams with orbital angular momentum / V.V. Kotlyar, A.A. Kovalev // Journal of the Optical Society of America A. – 2014. – V. 31(2). – P. 274-282.
  15. Gradshteyn, I.S. Table of Integrals, Series, and Products / I.S. Gradshteyn, I.M. Ryzhik. – New York: Academic, 1965.
  16. Abramovitz, M. Handbook of mathematical functions / M. Abramovitz, I.A. Stegun. – Dover Publications, 1965.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20