PDF, 2920 kB
Full text of article: Russian language.
DOI: 10.18287/0134-2452-2014-38-2-297-303
Pages: 297-303.
Abstract:
The authors propose two algorithms of linear spectral mixture analysis for hyperspectral images using base map. Base map data are used to refine coefficients of spectral mixture on the edges of map objects (in first algorithm) and acquire spectral signatures of small objects (in second algorithm), that does not occupy any pixel on input image entirely. The set of mixed signatures may be already known with undefined coefficients or unknown with extraction on one of the stages of the algorithm.
Key words:
hyperspectral images, spectral unmixing, hyperspectral analysis, subpixel selection, least squares method, base map.
References:
- Chang, C.I. Hyperspectral Data Processing: Algorithm Design and Analysis / C.I. Chang. – John Wiley & Sons, 2013. – 1164 p.
- Chang, C.I. Hyperspectral data exploitation: theory and applications / C.I. Chang. – Wiley-Interscience, 2007. – 456 p.
- Chang, C.I. Hyperspectral imaging: techniques for spectral detection and classification / C.I. Chang. – Springer, 2003. – 370 р.
- Keshara, N. A Survey of Spectral Unmixing Algorithms / N. Keshara // Lincoln Laboratory Journal. – 2003. – V. 14(1). – P.55-78.
- Heinz, D.C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery / D.C. Heinz, C.I. Chang // Geoscience and Remote Sensing, IEEE Transactions on. – 2001. – V. 39(3). – P. 529-545.
- Chang, C.I. Constrained subpixel target detection for remotely sensed imagery / C.I. Chang, D.C. Heinz // Geoscience and Remote Sensing, IEEE Transactions on. – 2000. – V. 38(3). – P. 1144-1159.
- Minu, М. Mathematical programming: Theory and Algorithms / M. Minu; – transl. from French and introduction by A.I. Shtern. – Moscow: “Nauka. Glavnaya redakcia fiziko-matematicheskoi literatury” Publisher. – 1990. – 488 p. – (In Russian).
- Haskell, K.H. An algorithm for linear least squares problems with equality and nonnegativity constraints / K.H. Haskell, R.J. Hanson // Mathematical Programming. – 1981. – V. 21(1). – P. 98-118.
- Plaza, A. Fast implementation of pixel purity index algorithm / A. Plaza, C.I. Chang // Proc. of the SPIE conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. – 2005. – V. 5806. – P. 307-317.
- Clark, R.N. The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 microns, U.S. Geological Survey Open File Report 93-592 / R.N. Clark, G.A. Swayze, A.J. Gallagher, T.V.V. King, W.M. Calvin – 1993. – 1340 p.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20