Two-dimensional accelerating bessel beams
V.V. Kotlyar, A.A. Kovalev, S.G. Zaskanov

Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University

PDF, 977 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-3-386-392

Pages: 386-392.

Abstract:
All well-known nonparaxial accelerating two-dimensional light beams propagate along curve trajectories, which do not bend more than a semicircle. In a recent paper, Optics Express 22, 7124 (2014) authors suggest to use additional mirror to generate an accelerating beam with its trajectory bending more than a semicircle, but less than the entire circle. In this paper, we show how to create two-dimensional light field with power flow circulating along a circle (ring). In addition, we consider accelerating nonparaxial asymmetric two-dimensional Bessel beams, which can be obtained from the conventional two-dimensional Bessel beam by complex displacement of the beam center. Simulation shown that with increasing asymmetry parameter curved path of the Bessel beam is shortened, but the relative magnitude of the side lobes (compared to the central lobe) simultaneously decreases.

Key words:
accelerating laser beam, Bessel mode, asymmetric Bessel mode, circular trajectory, sidelobe suppression.

References:

  1. Siviloglou, G.A. Accelerating finite energy Airy beams / G.A. Siviloglou, D.N. Christodoulides // Optics Letters. – 2007. – V. 32. – P. 979-981.
  2. Vaveliuk, P. Symmetric Airy beams / P. Vaveliuk, A. Len­cina, J. Rodrigo and O. Matos // Optics Letters. – 2014. – V. 39, Issue 8. – P. 2370-2373.
  3. Chu, X. Effect of aberrations on the parameters of an Airy beam / X. Chu, W. Wen // Optics Communications. – 2014. – V. 324. – P. 18-21.
  4. Liang, Y. Dynamical deformed Airy beams with arbitrary angles between two wings / Y. Liang, Y. Hu, Z. Ye, D. Song, C. Lou, X. Zhang, J. Xu, R. Morandotti, Z. Chen // Journal of the Optical Society of America A. – 2014. – V. 31, Issue 7. – P. 1468-1472.
  5. Li, P. Spiral autofocusing Airy beams carrying power-exponent-phase vortices / P. Li, S. Liu, T. Peng, G. Xie, X. Gan, J. Zhao // Optics Express. – 2014. – V. 22, Issue 7. – P. 7598-7606.
  6. Ruelas, A. Accelerating light beams with arbitrarily transverse shapes / A. Ruelas, J. Davis, I. Moreno, D. Cottrell, M. Bandres // Optics Express. – 2014. – V. 22, Issue 3. – P. 3490-3500.
  7. Kaminer, I. Nondiffracting Accelerating Wave Packets of Maxwell’s Equations / I. Kaminer, R. Bekenstein, J. Nemirovsky, M. Segev // Physical Review Letters. – 2012. – V. 108. – P. 163901.
  8. Zhang, P. Nonparaxial Mathieu and Weber Accelerating Beams / P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Mo­randotti, Z. Chen, X. Zhang // Physical Review Letters. – 2012. – V. 109. – P. 193901.
  9. Alonso, M. Generation of nonparaxial accelerating fields through mirrors. I: Two dimensions / M. Alonso, M. Bandres // Optics Express. – 2014. – V. 22, Issue 6. – P. 7124-7132.
  10. Kotlyar, V. Sidelobe contrast reduction for optical vortex beams using a helical axicon / V. Kotlyar, A. Kovalev, V. Soifer, C. Tuvey and J. Davis // Optics Letters. – 2007. – V. 32. – P. 921-923.
  11. Ohtake, Y. Sidelobe reduction of tightly focused radially higher-order Laguerre-Gaussian beams using annular masks / Y. Ohtake, T. Ando, T. Inoue, N. Matsumoto, H. Toyoda // Optics Letters. – 2008. – V. 33. – P. 617-619.
  12. Barwick, S. Reduced side-lobe Airy beams / S. Barwick // Optics Letters. – 2011. – V. 36. – P. 2827-2829.
  13. Kotlyar, V.V. Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Computer Optics. – 2014. – V. 38(1). – P. 4-10.
  14. Kotlyar, V.V. Asymmetric Bessel modes / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Optics Letters. – 2014. – V. 39, Issue 8. – P. 2395-2398.
  15. Lombardo, K. Orthonormal basis for nonparaxial focused fields in two dimensions, and its application to modeling scattering and optical manipulation of objects / K. Lom­bardo, M.A. Alonso // American Journal of Physics. – 2012. – V. 80, Issue 1. – P. 82-93.
  16. Kravtsov, Yu. Complex ray and complex caustics / Yu.A. Kravtsov // Radiophysics and Quantum Electronics. – 1967. – V. 10. – P. 719-730.
  17. Arnaud, J. Degenerate optical cavities. II: Effects of misalignments / J. Arnaud // Applied Optics. – 1967. – V. 8. – P. 1909-1917.
  18. Keller, J.B. Complex rays with an application to Gaussian beams / J.B. Keller and W. Streifer // Journal of the Optical Society of America. – 1971. – V. 61. – P. 40-43.
  19. Deschamps, G.A. Gaussian beams as a bundle of complex rays / G.A. Deschamps // Electronics Letters. – 1971. – V. 7. – P. 684-685.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20