(38-4) 02 * <<>> * Russian * English * Content * All Issues

On the diffraction of an optical beam by a phase shifted bragg grating
D. A. Bykov
, L. L. Doskolovich

 

Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University

PDF, 524 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-4-590-597

Pages: 590-597.

Abstract:
Diffraction of a 3D optical beam from a resonant multilayer structure (phase-shifted Bragg grating) is considered. It is shown that the said structure enables optical computation of the spatial Laplace operator of the electromagnetic field components of the incident beam. The computation of the Laplacian is performed in reflection at normal incidence. Presented numerical results demonstrate high quality of the Laplace operator computation. The beam transformation performed in transmission is also investigated.

Key words:
optical beam, phase shifted Bragg grating, optical resonance, Laplace operator.

Citation:
Bykov DA, Doskolovich LL. On the diffraction of an optical beam by a phase shifted bragg grating. Computer Optics 2014; 38(4): 590-597. DOI: 10.18287/0134-2452-2014-38-4-590-597.

References:

  1. Slavík, R. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings / R. Slavík, Y. Park, M. Kulishov, J. Azaña // Optics Letters. – 2009. – V. 34, No. 20. – P. 3116–3118.
  2. Preciado, M. A. Experimental demonstration of an optical differentiator based on a fiber Bragg grating in transmission / M. A. Preciado, X. Shu, P. Harper, K. Sugden // Optics Letters. – 2013. – V. 38, No. 6. – P. 917–919.
  3. Berger, N. K. Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating / N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, J. Azaña // Optics Express. – 2007. – V. 15, No. 2. – P. 371–381.
  4. Kulishov, M. Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings / M. Kulishov, J. Azaña // Optics Express. – 2007. – V. 15 No. 10. – P. 6152–6166.
  5. Bykov, D. A. Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals / D. A. Bykov, L. L. Doskolovich, V. A. Soifer // Journal of the Optical Society of America A. – 2012. – V. 29, No. 8. – P.1734–1740.
  6. Bykov, D. A. Time-domain differentiation of optical pulses in reflection and in transmission using the same resonant grating / D. A. Bykov, L. L. Doskolovich, N. V. Golovasti­kov, V. A. Soifer // Journal of Optics – 2013. – V. 15, No. 10. – P. 105703.
  7. Doskolovich, L. L. Spatial differentiation of optical beams using phase-shifted Bragg grating / L. L. Doskolovich, D. A. Bykov, E. A. Bezus, V. A. Soifer // Optics Letters. – 2014. – V. 39. No. 5. – P. 1278–1281.
  8. Guo, C.-S. Laplacian differential reconstruction of in-line holograms recorded at two different distances / C.-S. Guo, Q.-Y. Yue, G.-X. Wei, L.-L. Lu, S.-J. Yue // Optics Letters. – 2008. – V. 33, No. 17. –P. 1945–1947.
  9. Ryle, J. P. Dual wavelength digital holographic Laplacian reconstruction / J. P. Ryle, D. Li, and J. T. Sheridan // Optics Letters. – 2010. – V. 35, No. 18. – P. 3018–3020.
  10. Sepke, S. M. Exact analytical solution for the vector electromagnetic field of Gaussian, flattened Gaussian, and annular Gaussian laser modes / S. M. Sepke, D. P. Umstadter // Optics Letters. – 2006. – V. 31, No. 10. – P. 1447–1449.
  11. Zhou, G. The analytical vectorial structure of a nonparaxial Gaussian beam close to the source // Optics Express. – 2008. – V. 16, No. 6. – P. 3504–3514.
  12. Emadi, A. Linear variable optical filter-based ultraviolet microspectrometer / A. Emadi, H. Wu, G. de Graaf, P. Enoksson, J. H.  Correia, R. Wolffenbuttel // Applied Optics. – 2012. – V. 51, No. 19. – P. 4308–4315.
  13. Emadi, A. Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter / A. Emadi, H. Wu, G. de Graaf, R. Wolffenbuttel // Optics Express. – 2012. – V. 20, No. 1. – P. 489–507.
  14. Kazanskiy, N. L. Simulation of hyperspectrometer on spectral linear variable filters / N. L. Kazanskiy, S. I. Kha­ri­to­nov, S. N. Khonina, S. G. Volotovskiy, Yu. S. Strelkov // Computer Optics. – 2014. – V. 38, No 2. – P. 256–270. – (In Russian).
  15. Bracewell, R. The Fourier transform and its applications.– 3rd ed. – New York: McGraw-Hill, 1999. – 640 p.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20