(38-4) 21 * <<>> * Russian * English * Content * All Issues

Manipulation of micro-objects using linear traps generated by vortex axicons
R.V. Skidanov
, A.P.Porfirev, S.V. Ganchevskaya

 

Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University

PDF, 450 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-4-717-721

Pages: 717-721.

Abstract:
We present a method of forming linear optical traps using vortex axicons. Experimental results on trapping and guiding of polystyrene microparticles with a diameter of 5 μm are discusssed. Such a linear trap is experimentally shown to possess the capturing force anisotropy.

Key words:
linear optical trap, vortex axicon, microparticle sorting.

Citation:
Skidanov RV, Porfirev AP, Ganchevskaya SV. Manipulation of micro-objects using linear traps generated by vortex axicons. Computer Optics 2014; 38(4): 717-721. DOI: 10.18287/0134-2452-2014-38-4-717-721.

References:

  1. Qiu, C.-W. Engineering light-matter interaction for emerging optical manipulation applications / Cheng-Wei Qiu, D. Palima, A. Novitsky, D. Gao, W. Ding, S.V. Zhukovsky and J. Gluckstad // Nanophotonics. – 2014. – P. 1-21.
  2. Buican, T.N. Automated single-cell manipulation and sorting by light trapping / T.N. Buican, M.J. Smyth, H.A. Crissman, G.C. Salzman, C.C. Stewart, J.C. Martin // Applied Optics. – 1987. – Vol. 26. – P. 5311-5316.
  3. Applegate, R.W. Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars / R.W. Applegate, D.W.M. Marr, J. Squier, S.W. Graves // Optics Express. – 2009. – Vol. 17. – P. 16731-16738.
  4. Applegate Jr., R.W. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping / R.W. Applegate Jr., J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, P. Bado, M.A. Dugand, A.A. Said // Lab Chip. – 2006. – Vol. 6. – P. 422-426.
  5. MacDonald, M.P. Microfluidic sorting in an optical lattice / M.P. MacDonald, G.C. Spalding, K. Dholakia // Letters to Nature. – 2003. – P. 426:421.
  6. Jakl, P. Static optical sorting in a laser interference field / P. Jakl, T. Cizmar, M. Sery, P. Zemanek // Applied Physics Letters. – 2008. – Vol. 92. – P. 161110-161113.
  7. Brzobohaty, O. Experimental demonstration of optical transport, sorting and self-arrangement using a “tractor beam” / O. Brzobohaty, V. Karasek, M. Šiler, L. Chvatal, T. Cizmar, P. Zemanek // Nature Photonics. – 2013. – Vol. 7. – P. 123-127.
  8. Tietjen, G.T. An efficient method for the creation of tunable optical line traps via control of gradient and scattering forces / G.T. Tietjen, Y. Kong, R. Parthasarathy // Optics Express. – 2008. – Vol. 16(14). – P. 10341-10348.
  9. Pauzauskie, P.J. Optical trapping and integration of semiconductor nanowire assemblies in water / P.J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, J. Iphardt // Nature Materials. – 2006. – Vol. 5. – P. 97-101.
  10. Borghese, F. Radiation force and torque on optically trapped linear nanostructures / F. Borghese, P. Denti, R. Saija, M.A. Iatì, O.M. Maragò // Physical Review Letters. – 2008. – P. 163903.
  11. Yu, T. The manipulation and assembly of CuO nanorods with line optical tweezers / T. Yu, F.-C. Cheong, C.-H. Sow // Nanotechnology. – 2004. – Vol. 15. – P. 1732-1736.
  12. Yan, Z. Guiding Spatial Arrangements of Silver Nanoparticles by Optical Binding Interactions in Shaped Light Fields / Z. Yan, R.A. Shah, G. Chado, S.K. Gray, M. Pelton, N.F. Scherer // ACS Nano. – 2013. – Vol. 7(2). – P. 1780-1802.
  13. Biancaniello, P.L. Line optical tweezers instrument for measuring nanoscale interactions and kinetics / P.L. Biancaniello, J.C. Crocker // Review of Scientific Instruments. – 2006. – V. 77. – P. 113702.
  14. Demergis, V. High precision and continuous optical transport using a standing wave optical line trap / V. Demergis, E.L. Florin // Optics Express. – 2011. – V. 19 (21). – P. 20833-20848.
  15. Marchington, R.F. Optical deflection and sorting of microparticles in a near-field optical geometry / R.F. Marchington, M. Ma­zilu, S. Kuriakose, V. Garces-Chavez, P.J. Re­ece, T.F. Kra­uss, M. Gu, K. Dholakia // Optics Express. – 2008. – Vol. 16(6). – P. 3712-3726.
  16. Morozov, А.А. Superposition of the light field for linear movement microobject // Herald of Samara State Aerospace University named after academician S.P. Korolev (National Research University). – 2010. – Vol. 4. – P. 232-237. – (In Russian).
  17. Kotlyar, V.V. Generating hypergeometric laser beams with a diffractive optical element / V.V. Kotlyar, A.A. Kovalev, R.V.  Skidanov, S.N. Khonina, J. Turunen // Applied Optics. – 2008. – V. 47(32). – P. 6124-6133.
  18. Methods for Computer Design of Diffractive Optical Elements / D.L. Golovashkin, L.L. Doskolovich, N.L. Kazanskiy, S.N. Khonina, V.V. Kotlyar, V.S. Pavelyev, V.A. Soifer, ed. by V.A. Soifer // New York. John Wiley & Sons, Inc., 2002. – 784 p.
  19. Skidanov, R.V. Experimental study of the movement of dielectric balls in light beams with angular harmonics of high order / R.V. Skidanov, S.N. Khonina, V.V. Kotlyar, V.A. Soifer // Computer Optics. – 2007. – Vol. 31(1). – P. 14-21. – (In Russian).
  20. Skidanov, R.V. Diffractive optical elements for the formation of combinations of vortex beams in the problem manipulation of microobjects / R.V. Skidanov, S.V. Ganchevskaya // Computer Optics. – 2014. – Vol. 38(1). – P. 65-71.
  21. Skidanov, R.V. The calculation of the force of interaction of the light beam with micro particles of arbitrary form / R.V. Skidanov // Computer Optics. – 2005. – Vol. 28. – P. 18-21. – (In Russian).

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20