Vectorial Hankel laser beams carrying orbital angular momentum
V.V. Kotlyar, A.A. Kovalev
Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University
Full text of article: Russian language.
PDF
Abstract:
We have obtained a new solution of the paraxial Helmholtz equation, which describes a two-parameter family of structurally stable three-dimensional vortex circular Pearcey beams with their complex amplitude expressed through a degenerate hypergeometric function. The vortex Pearcey beams have an orbital angular momentum and the auto-focusing property, and propagate along an accelerating trajectory toward their focus, where the intensity ring of the beam is "sharply" reduced in diameter. An explicit expression has been obtained for the complex amplitude of vortex circular Pearcey-Gaussian beams, which also have the auto-focusing property.
Keywords:
paraxial laser beam, form-invariant laser beam, vortex Pearcey beam, accelerating beam, auto-focusing.
Citation:
Kovalev AA, Kotlyar VV. Pearcey beams carrying orbital angular momentum. Computer Optics 2015; 39(4): 453-8. DOI: 10.18287/0134-2452-2015-39-4-453-458.
References:
- Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 2012; 6: 488-96.
- Khonina SN, Kotlyar VV, Skidanov RV, Soifer VA, Jefimov K, Simonen J, Turunen J. J Mod Opt 2004; 51: 2167-84.
- Zhu Y, Liu X, Cao J, Zhang Y, Zhao F. Probability density of the orbital angular momentum mode of Hankel-Bessel beams in an atmospheric turbulence. Opt Express 2014; 22(7): 7765-72.
- Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory. J Opt Soc Am A 1987; 4(4): 651-4.
- Siegman AE. Lasers. Mill Valley, California: University Science; 1986.
- Kotlyar VV, Skidanov RV, Khonina SN, Soifer VA. Hypergeometric modes. Opt Lett 2007; 32: 742-4.
- Ring J, Lindberg J, Mourka A, Mazilu M, Dholakia K, Dennis M. Auto-focusing and self-healing of Pearcey beams. Opt Express 2012; 20: 18955-66.
- Berry MV, Balazs NL. Nonspreading wave packets. Am J Phys 1979; 47(3): 264-7.
- Pearcey T. The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic. Phil Mag S 1946; 7(37): 311–7.
- Berry MV, Howls CJ. Integrals with coalescing saddles. Digital Library of Mathematical Functions, National Institute of Standards and Technology 2012. Source: <http://dlmf.nist.gov/36.2>.
- Deng D, Chen C, Zhao X, Chen B, Peng X, Zheng Y. Virtual Source of a Pearcey beam. Opt Lett 2014; 39(9): 2703-6.
- Kovalev AA, Kotlyar VV, Zaskanov SG. Structurally stable three-dimensional and two-dimensional laser half Pearcey beams, Computer Optics 2014; 38(2): 193-7.
- Kovalev AA, Kotlyar VV, Zaskanov SG, Profirev AP. Half Pearcey laser beams. J Opt 2015; 17: 035604.
- Prudnikov AP, Brychkov YA, Marichev OI. Integrals and Series, Special Functions. New York: Gordon and Breach; 1981.
- Gradshteyn IS, Ryzhik IM. Table of Integrals, Series, and Products. New York: Academic; 1965.
- Kotlyar VV, Kovalev AA, Soifer VA. Transformation of decelerating laser beams into accelerating ones. J Opt 2014; 16(8): 085701.
- Papazoglou DG, Efremidis NK, Christodoulides DN, Tzortzakis S. Observation of abruptly autofocusing waves. Opt Lett 2011; 36: 1842-4.
- Kotlyar VV, Kovalev AA. Family of hypergeometric laser beams. J Opt Soc Am A 2008; 25: 262-70.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20