A differential method for calculating X-ray diffraction on crystals: scalar theory
S.I. Kharitonov, S.G. Volotovskiy, S.N. Khonina, N.L. Kazanskiy

 

Image Processing Systems Institute, Russian Academy of Sciences,

Samara State Aerospace University

Full text of article: Russian language.

 PDF

Abstract:
In the Introduction section, we offer a historical overview of main experimental and theoretical developments in the field of X-ray crystal analysis. The main part contains a differential approach to solving the problem of diffraction of X-rays by crystals within the scalar theory. Examples of numerical simulation for the basic types of crystal lattices are included.

Keywords:
X-ray diffraction, diffraction by crystals, differential method, the basic types of crystal lattices.

Citation:
Kharitonov SI, Volotovskiy SG, Khonina SN, Kazanskiy NL. A differential method for calculating x-ray diffraction by crystals: the scalar theory. Computer Optics 2015; 39(4): 469-79. DOI: 10.18287/0134-2452-2015-39-4-469-479.

References:

  1. Nature Milestones in Crystallography. Source: <http://www.na­ture.com/milestones/milecrystal/index.html>.
  2. Haüy RJ. Essai d’une Théorie sur la Structure des Crystaux. Gogué et Née de La Rochelle, 1784.
  3. Bravais A. Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l’espace. J l’Ecole Polytechnique 1850 ; 19 : 1.
  4. Fedorov ES. The elements of the study of configurations (in Russian). Trans Mineral Soc 1885; 21: 240.
  5. Fedorov ES. The symmetry of real systems of configura-tions (in Russian). Trans Mineral Soc Vol. 1891; 28: 1-146.
  6. Bragg WL. The specular reflection of X-rays. Nature 1912; 90: 410.
  7. Bragg WL. The structure of crystals as indicated by their diffraction of X-rays. Proc Royal Soc Lond A 1913; 89: 248-77.
  8. Bragg WH, Bragg WL. The structure of the diamond. Nature 1913; 91: 557.
  9. Bragg WH, Bragg WL. The X-ray spectrometer. Nature 1914; 94: 199-200.
  10. Pinsker ZG. Dynamic X-ray scattering in perfect crystals (in Russian). Moscow: "Nauka" Publisher, 1974.
  11. James RW. The optical principles of the diffraction of x-rays. London: G. Bell & Sons, 1948.
  12. Zachariasen WH. Theory of X-ray Diffraction in Crystals. Mineola, N.Y.: Dover, 2004.
  13. James RW. The Dynamical Theory of X-Ray Diffraction. Solid State Physics 1963; 15: 53-220.
  14. Borrmann G. Über Extinktionsdiagramme der Röntgen­strahlen von Quarz. Zeitschrift für Physik 1941; 42: 157-62.
  15. Borrmann G. Die Absorption von Röntgenstrahlen in Fall der Interferenz. Zeitschrift für Physik 1950; 127: 297-323.
  16. Borrmann G. Der kleinste Absorptionskoeffizient interferi­erender Rontgenstrahlung. Zeitschrift für Kristallographie 1954; 106: 109-21.
  17. Laue M. Die Absorption der Röntgenstrahlen in Kristallen im Interferenzfall. Acta Crystallographica 1949; 2: 106-13.
  18. Renninger M. Verstärkung schwacher und Vortäuschung verbotener Röntgenreflexe durch „Umweganregung“. Natur­wissenschaften 1937; 25(3): 43. DOI: 10.1007/BF01492117.
  19. Borrmann G, Hartwig W. Die Absorption der Röntgen­strahlen im Dreistrahlfall der Interferenz. Zeitschrift für Kristallographie 1965; 121: 401-9.
  20. Ewald PP, Héno Y. X-ray diffraction in the case of three strong rays. I. Crystal composed of non-absorbing point atoms. Acta Crystallographica Section A 1968; 24(1): 5-15. DOI: 10.1107/S0567739468000033.
  21. Héno Y, Ewald PP. Diffraction des rayons X dans le`cas de trois rayons forts'. II. Influence de l'absorption et du facteur de diffusion atomique. Acta Crystallographica Section A 1968 ; 24(1) : 16-42. DOI: 10.1107/S0567739468000045.
  22. Hildebrandt G. Röntgenwellenfelder in einem Dreistrahl­fall. Physica status solidi (b) 1967 ; 24(1) : 245-61.
  23. Afanasiev AM, Kagan Yu. The Role of Lattice Vibration in Dynamical Theory of X-Rays. Acta Crystallographica 1968; A24(2): 163-70.
  24. Wooster WA. Diffuse X-Ray reflections from crystals. Oxford: Clarendon Press, 1962.
  25. Penning P, Polder D. Anomalous transmission of X-rays in elactically deformad crystals. Philips Research Reports 1961; 16: 419-40.
  26. Kato N. Pendellösung fringes in distorted crystals i. fermat's principle for bloch waves. Journal of the Physical Society of Japan 1963; 18: 1785-91.
  27. Kato N. Pendellösung fringes in distorted crystals iii. application to homogeneously bent crystals. Journal of the Physical Society of Japan 1964; 19(67): 971-85.
  28. Takagi S. Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Crystallographica 1962; 15: 1311-2.
  29. Takagi S. A Dynamical theory of diffraction for a distorted crystals. Journal of the Physical Society of Japan 1969; 26: 1239-53.
  30. Slobodetskii ISh, Chukhovskii FN, Indenbom TL. X-ray Diffraction Under Conditions of the Spatially-inhomo­geneous Dynamic Problem. JETP Letters 1968; 8(2): 55-8.
  31. Authier A. Application de la theorie dynamique de S. Ta­kagi au contraste d'un defaut plan en topographie par rayons X. I. Faute d'empilement. Acta Crystallographica 1968; A24: 517-26.
  32. Indenbom TL, Chukhovskii FN. The problem of the im-aging in X-ray optics – Preprint (in Russian). Moscow: Institute of Crystallography, USSR Academy of Sciences, 1971.
  33. Landau J, Groscurth CR, Wright L, Condit CM. Visualizing Nanotechnology: The Impact of Visual Images on Lay American Audience Associations with Nanotechnology. Public Understanding of Science 2009; 18(3): 325-37.
  34. Milburn C. Nanovision: Engineering the Future. Durham: Duke University Press, 2008.
  35. Soifer VA, Kupriyanov AV. Analysis and recognition of the nanoscale images: conventional approach and novel problem statement (in Russian). Computer Optics 2011; 35(2): 136-44.
  36. Kupriyanov AV, Soifer VA. On the observability of the crystal lattice with the images of their projections (in Russian). Computer Optics 2012; 36(2): 249-56.
  37. Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (4th Edition). New York: Pergamon Press, 1969.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20