Retroperitoneal space organ segmentation from ct images based on the level set function
R.V. Eruslanov, M.N. Orehova, V.N. Dubrovin
Volga State University of Technology,
Republican Clinical Hospital of the Mary-El Republic
Full text of article: Russian language.
PDF
Abstract:
This article presents a method for solving a problem of segmentation of the retroperitoneal space organs from tomographic images. The method relies on the level set function. We also discuss a method of image preprocessing based on a nonlinear anisotropic diffusion filter, which operates by smoothing the image, while maintaining boundaries between the segments. A tomographic-image segmentation algorithm based on the level set function is synthesized.
Keywords:
segmentation, computer tomography, retroperitoneal space organs, CT (computed tomography), image processing, anisotropic diffusion, nonlinear filtration, level set, active contour.
Citation:
Eruslanov RV, Orehova MN, Dubrovin VN. Retroperitoneal space organ segmentation from CT images based on the level set function. Computer Optics 2015; 39(4): 592-9. DOI: 10.18287/0134-2452-2015-39-4-592-599.
References:
- Blackmore CC, Mecklenburg RS, Kaplan GS. Effectiveness of clinical decision support in controlling inappropriate imaging. Journal of the American College of Radiology 2011; 8(1): 19-25.
- Brouwer OR, Buckle T, Bunschoten A, Kuil J, Vahrmeijer AL, Wendler T, Valdés-Olmos RA, Van Der Poel HG, Van Leeuwen FWB. Image navigation as a means to expand the boundaries of fluorescence-guided surgery. Physics in Medicine and Biology 2012; 57(10): 3123-36.
- Rozhentsov ��, Doubrovin VN, Bayev ��, Naoumov �S. 3D image generation at prostata gland transurethral resection [In Russian]. Vest. Povol. Gos. Tekhn. Univ. 2008; 3 : 45-50.
- Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D - CT to stereoscopic video registration. Urology 2009; 73: 896-900.
- Mitterberger M, Pinggera GM, Peschel R, Bartsch G, Pallwein L, Frauscher F. The use of three-dimensional computed tomography for assessing patients before laparoscopic adrenal-sparing surgery. BJU Int 2006; 98(5): 1068-73.
- Dubrovin VN, Bashirov VI, Eruslanov RV, Furman YA, Kudryavtsev AA. The first experience of computer optimization method of minimally invasive surgical approach based on preoperational tomographic data in performing retroperitoneoscopic ureterolithotomy [In Russian]. Medical bulletin of Bashkortostan 2013; 8(3): 38-41.
- Volonté F, Pugin F, Bucher P, Sugimoto M, Ratib O, Morel P. Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: Not only a matter of fashion. Journal of Hepato-Biliary-Pancreatic Sciences 2011; 18(4): 506-9.
- Sharp G, Fritscher KD, Pekar V, Peroni M, Shusharina N, Veeraraghavan H, Yang J. Vision 20/20: Perspectives on automated image segmentation for radiotherapy. Medical Physics 2014; 41(5): DOI: 10.1118/1.4871620.
- Emel'ianov SI, Veredchenko VA, Pushkar' DY, Mitichkin AE, Veredchenko AV, Shcherbakov NV. The use of intraoperative navigation in laparoscopic nephrectomy [In Russian]. Endoscopic surgery 2009; 2: 32-5.
- Huppertz A, Radmer S, Asbach P, Juran R, Schwenke C, Diederichs G, Hamm B, Sparmann M. Computed tomography for preoperative planning in minimal-invasive total hip arthroplasty: Radiation exposure and cost analysis. European Journal of Radiology 2011; 78(3): 406-13.
- Dubrovin VN, Bashirov VI, , Furman YaA, Rozhentsov AA, Kudryavtsev AA., Eruslanov RV, Bayev ��, Nazarov IL. Hardware/software complex for selection optimal location for a trocar in laparoscopy [In Russian]. Pat RF of Invent N127615 of August 15, 2012.
- Dubrovin VN, Bashirov VI, Furman YA, Rozhentsov AA, Yeruslanov RV, Kudryavtsev AA. Choice of surgical access for retroperitoneoscopic ureterolithotomy according to the results of 3D reconstruction of operational zone agreed with the patient: initial experience. Central European Journal of Urology 2013; 66(4): 447-52.
- Dubrovin VN, Bashirov VI, Furman YA, Rozhentsov AA, Eruslanov RV, Kudryavtsev AA. Optimization of computer-assisted surgical access during the retroperitoneal endoscopic ureterolithotomy using the patient coordinated 3D reconstruction of the operation area [In Russian]. Experimental and Clinical Urology 2013; 4: 86-9.
- Koss JE, Newman FD, Johnson TK, Kirch DL. Abdominal organ segmentation using texture transforms and a hopfield neural network. Correspondences of IEEE Transaction on Medical Imaging 1999; 18(7): 640-8.
- Lee CC, Chung PC, Tsai HM. Identifying multiple abdominal organs from CT image series using a multimodule contextual neural network and spatial fuzzy rules. IEEE Transaction on Information Technology in Biomedicine 2003; 7: 208-17.
- Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, Dourthe O, Malassagne B, Smith M, Mutter D, Marescaux J. Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery. Computed Aided Surgery 2001; 6(3): 131-42.
- Lamecker H, Lange T, Seebass M. Segmentation of the liver using a 3D statistical shape model. ZIBReport 04-09 (April 2004) 2004: 1-25. DOI:10.1.1.90.6969.
- Park H, Bland P, Meyer C. Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Transactions on Medical Imaging 2003; 22(4): 483-92.
- Zhou X, Kitagawa T, Hara T, Fujita H, Zhang X, Yokoyama R, Kondo H, Kanematsu M, Hoshi H. Constructing a Probabilistic Model for Automated Liver Region Segmentation Using Non-contrast X-Ray Torso CT images. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006.; 4191: 856-63.
- Lefhohn A, Cates JE, Whitaker RT. Interactive, GPU-based level sets for 3D segmentation. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003; 2878: 564-72.
- Cates J, Lefohn A, Whitaker R. GIST: an interactive, GPU-based level set segmentation tool for 3D medical images. Medical Image Analysis 2004; 8(3): 217-31.
- Sethain JA. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press; 1999.
- Osher S, Paragois N. Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer-Verlag New York,Inc.; 2003.
- Perona P, Malik J. Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 1990; 12(7): 629-39.
- Gerig G, Kikinis R, Kübler O, Jolesz FA. Nonlinear Anisotropic Filtering of MRI Data. IEEE Transactions on Medical Imaging 1992; 11(2): 221-32.
- Lefohn AE, Kniss JM, Hansen CD, Whitaker RT. A streaming narrow-band algorithm: Interactive computation and visualization of level sets. IEEE Trans. on Visualization and Computer Graphics 2004; 10(4): 422-433.
- Lemeshko BY, Lemeshko SB, Postovalov SN, Chimitova EV. Statistical data analysis, simulation and study of probability regularities. Computer approach: monograph. [In Russian]. – Novosibirsk : NSTU Publisher; 2011.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20