Statistical estimation of the probability of the correct substance detection in FTIR spectroscopy
A.N. Morozov, I.V. Kochikov, A.V. Novgorodskaya, A.A. Sologub, I.L. Fufurin

 

Bauman Moscow State Technical University,
Research Computer Center, M.V. Lomonosov Moscow State University

Full text of article: Russian language.

 PDF

Abstract:
In the present paper a problem of substance identification in FTIR (Fourier transform infrared) spectroscopy is considered. The spectral library hitlist search is chosen as the main tactic. In the paper the Pearson correlation coefficient as a similarity criterion between two spectra is suggested. A situation when one of the measured spectra has an additive narrowband white noise component with a Gaussian distribution is considered. In that case the probability density of the correlation coefficient is found. A concept of the probability of correct detection is proposed and a theoretical expression is found. In addition, we consider a boundary correlation coefficient search algorithm, which allows one to find a boundary value providing the required correct detection. Computational experiments have shown the applicability of the method.

Keywords:
spectroscopy, identification, probability of correct detection, the boundary value of detection.

Citation:
Morozov AN, Kochikov IV, Novgorodskaya AV, Sologub AA, Fufurin IL. Statistical estimation of the probability of the correct substance detection in FTIR spectroscory. Computer Optics 2015; 39(4): 614-21. DOI: 10.18287/0134-2452-2015-39-4-614-621.

References:

  1. Morozov AN, Svetlichniy SI. Basics of Fourier Spectroradiometry. M: Science; 2006.
  2. Hemmer MC, Gasteiger J. Prediction of Three-Dimensional Molecular Structures Using Information from Infrared Spectra. Analitica Chimica Acta 2000; 420(2): 145-54.
  3. Ehrentreich F. Joined knowledge-and signal processing for infrared spectrum interpretation.  Analitica Chimica Acta 1999; 393: 193-200.
  4. Schoonjans V, Questier F. Assessing molecular similarity/diversity of chemical structures by FT-IR spectroscopy. Journal of Pharmaceutical and Biomedical Analysis 2001; 24: 613-27.
  5. Lebedev �S. Data base usage in IR and mass spectroscopy for the structural detection of organic substances. Journal of Analytical Chemistry 1993; 48: 851-63.
  6. Varmuza K, Penchev PN, Scsibrany H. Maximum Common Substructures of Organic Compounds Exhibiting Similar Infrared Spectra.  Journal of Chemical Information and Computer Sciences Impact 1998; 38: 420-7.
  7. Varmuza K, Penchev PN, Scsibrany H. Large and frequently occurring substructures in organic compounds obtained by library search of infrared spectra. Vibrational Spectroscopy 1999; 19: 407-12.
  8. Penchev PN, Varmuza K. Characteristic substructures in sets of organic compounds with similar infrared spectra.  Computers&Chemistry 2001; 25: 231-7.
  9. Varmuza K, Kochev NT, Penchev PN. Evaluation of Hitlists from IR Library Searches by the Concept of Maximum Common Substructures Analytical Sciences 2001; 17: 659-62.
  10. Derendyaev BG. Taxonomy of structures selected from the IR spectroscopy database. Journal of Structural Chemistry 2001; 42(2): 271-80.
  11. Ehrentreich F. Three-step procedure for infrared spectrum interpretation. Analitica Chimica Acta; 427(2): 233-44.
  12. Clerc JT, Pretsch E, Zurcher M. Perfomance Analysis of Infrared Library Search Systems. Microchimica Acta [Wien] 1986; 2: 217-42.
  13. Luinge HJ. Automated interpretation of vibrational spectra. Vibrational Spectroscopy 1990; 1: 3-18.
  14. Zurcher M, Clerc JT, Farkas M, Pretsch E. General theory of similarity measures for library search systems. Analitica Chimica Acta; 206(0): 161-72.
  15. Pearson K. Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London 1895; 58: 40-242.
  16. Kochikov IV, Morozov AN, Svetlichniy SI, Fufurin IL. Substance detection in the free atmosphere by single interferogram in FTIR.  Optics and Spectroscopy 2009; 106(5): 743-9.
  17. Harig R, Matz G. Toxic cloud imaging by infrared spectrometry: A scanning FTIR system for identification and visualization. Field Analytical Chemistry&Technology 2001; 5: 75-90. DOI: 10.1002/fact.1008.
  18. Beil A, Daum R, Matz G, Harig R. Remote sensing of atmospheric pollution by passive FTIR spectrometry in Spectroscopic Atmospheric Environmental Monitoring Techniques. Proceedings of SPIE 1998; 3493: 32-43.
  19. Clerbaux C, Hadji-Lazaro J, Turquety S, Mégie G, Coheur P-F. Trace gas measurements from infrared satellite for chemistry and climate applications. Atmospheric Chemistry and Physics 2003; 3: 1495-508. DOI:10.5194/acp-3-1495-2003.
  20. Kochikov I, Morozov A, Fufurin I. Numerical procedures for substances identification and concentration calculation in the open athmosphere by processing a single ftir measurement. Computer Optics 2012; 36(4): 554-61.
  21. Zaitschev KI, Gavdush ��, Karasik V�, Jurchenko S�. Highly accurate reconstruction of spectral optical characteristics of a medium using terahertz pulsed spectroscopy. Herald of the Bauman Moscow State Technical University. Ser. Natural Sciences 2014; 3: 69-92.
  22. Morozov �N, Svetlichniy SI, Tabalin S�, Fufurin IL. Physical basics of interferometer with rotating plate estimation.  Journal of Optical Technology 2013; 80(8): 37-41.
  23. Fisher RA. On the probable error of a coefficient of correlation deduced from a small sample. Metron 1921; 1(4): 3-32. Retrieved 2009-03-25.
  24. Kenney JF, Keeping ES. Mathematics of Statistics. Pt. 2. NY: D Van Nostrand Company, inc. 1951.
  25. Vasiljev NS, Morozov AN. Subsnce identification by error deformed spectra. Computer Optics 2014; 38(4): 856-64.
  26. Pitjev JP, Shishmarev IA.The theory of probability for physics. Moscow State University Publishing; 1983.
  27. Benesty J, Chen Jingdong, Yiteng H. On the Importance of the Pearson Correlation Coefficient in Noise Reduction. Audio, Speech and Language Processing, IEEE Transaction on 2008; 16(4): 757-65.
  28. Perl Y, Itai A, Avni H. Interpolation search – a log logN search. Communications of the ACM 1978; 21(7): 550-3.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20